Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix

Why Guarantee Employment? Evidence from a Large Indian Public-Works Program

Laura Zimmermann

University of Georgia

lvzimmer@uga.edu

December 5, 2014

Introduction ●	Background 00	Theoretical Model 00	Identification Strategy	Empirical Results 00000	Conclusion 00	App en dix
Introdu	iction					

What are the labor-market impacts of India's Mahatma Gandhi National Rural Employment Guarantee Scheme (MGNREGS)?

- Unemployment and underemployment widespread problems in developing countries
 - aggregate shocks
 - seasonality
 - incomplete insurance markets

Introduction ●	Background 00	Theoretical Model 00	Identification Strategy	Empirical Results 00000	Conclusion 00	App en dix
Introdu	iction					

What are the labor-market impacts of India's Mahatma Gandhi National Rural Employment Guarantee Scheme (MGNREGS)?

- Unemployment and underemployment widespread problems in developing countries
 - aggregate shocks
 - seasonality
 - incomplete insurance markets
- Public-works programs popular government tools
- Resurgence of interest: long-run social protection
 - World Bank funded programs in 24 countries (2007-2009)
 - safety net
 - income transfer to poor
 - asset creation
 - legal guarantee and broad coverage make NREGS largest and most ambitious program

- Public-works programs in developing countries
 - Empirics
 - Subbarao 1997, Subbarao et al. 2013, Datt and Ravallion 1994, Berhane et al. 2011, Gilligan et al. 2009
 - Theory
 - Besley and Coate 1992, Basu 2002, Basu forthcoming
 - Conclusions
 - Propensity score matching and DID strategies, large focus on targeting and take-up, some evidence on time allocation

NREGS

- Labor market impacts
 - Azam 2012, Berg et al. 2012, Imbert and Papp 2013, Johnson 2009
- Other outcomes
 - Deininger and Liu 2013, Klonner and Oldiges 2012
- Conclusions
 - DID strategies, substantial consumption and poverty impacts, heterogeneous treatment effects in labor market outcomes

- Based on National Rural Employment Guarantee Act (NREGA)
- Up to 100 days of public employment at minimum wage for each rural household

- Based on National Rural Employment Guarantee Act (NREGA)
- Up to 100 days of public employment at minimum wage for each rural household
- No other eligibility criteria
- Households can apply for work at any time of the year
- Men and women paid equally

- Based on National Rural Employment Guarantee Act (NREGA)
- Up to 100 days of public employment at minimum wage for each rural household
- No other eligibility criteria
- Households can apply for work at any time of the year
- Men and women paid equally
- NREGS projects supposed to advance local development
 - no contractors or machines
 - number of permissible categories Categories
 - in practice, most projects focus on drought-proofing, land development Projects

Laura Zimmermann (UGA)

If employment guarantee functions as a safety net

- Ex post effect
 - NREGS employment higher after bad economic shock
- Ex ante effect
 - NREGS employment is low
 - Private employment falls
 - Family employment rises

- National Rural Employment Guarantee Act (NREGA) passed in the Indian Parliament in August 2005
- Came into force in February 2006 in India's 200 'least developed' districts (Phase 1)
- Extended to 130 districts in April 2007 (Phase 2)
- Extended to the rest of the country in April 2008 (Phase 3)
- Since 2008, the scheme operates in 99 percent of Indian districts

The algorithm

- Step 1: Numbers of treatment districts assigned to states based on state proportion of national poor (headcount poverty ratio)
 - Inter-state fairness

The algorithm

- Step 1: Numbers of treatment districts assigned to states based on state proportion of national poor (headcount poverty ratio)
 - Inter-state fairness
- Step 2: Within-state treatment assignment based on their rank according to a created poverty index
 - Intra-state fairness

- Reconstruct the algorithm values
 - Headcount poverty ratio (Planning Commission 2009)
 - District poverty index variable and rank (Planning Commission 2003)
- Algorithm generates state-specific cutoffs
- Focus on Phase 2 cutoff
- Re-normalize the rank variable so that all cutoffs at 0
- All-India prediction success rate
 - Phase 1: 0.84
 - Phase 2: 0.82

Observations)

State Success

Unlikely

- Step 1
 - Headcount poverty ratios based on mid-1990s information
 - Population counts publicly available from Indian Census

Unlikely

- Step 1
 - Headcount poverty ratios based on mid-1990s information
 - Population counts publicly available from Indian Census
- Step 2
 - Development index/rank created in 2003 based on early- to mid-1990s information
 - Had been used in earlier programs (smaller, temporary), lower cutoffs
 - Detailed explanation of creation of rank variable publicly available

- Representative National Sample Survey (NSS) data on Indian households (2007/08)
- Sample restrictions
 - Drop Phase 1 districts
 - Only keep rural areas
 - 18-60 year olds with at most secondary education
 - Collapse to district-season level
- Construct extensive-margin employment outcomes (public, private, family), daily private-sector wage
- Use baseline information from 2004/05 Baseline Test

Summary Statistics

Introduction Background Theoretical Model Identification Strategy Empirical Results Conclusion Appendix on Operation Strategy Empirical Specification

$$\begin{aligned} y_{ijk} &= \beta_0 + \beta_1 \textit{nregs}_{ij} + \beta_2 \textit{nregs} * \textit{rank}_{ij} + \beta_3 \textit{nregs} * \textit{rank}_{ij}^2 \\ &+ \beta_4 \textit{rank}_{ij} + \beta_5 \textit{rank}_{ij}^2 + \beta_6 \textit{baseline } y_{ij} + \eta_j + \epsilon_{ijk} \end{aligned}$$

Coefficient of interest: β_1 Standard errors clustered at the district level Main specification: Intent-to-Treat effect Introduction Background Theoretical Model Identification Strategy 0000000 Empirical Results Conclusion Appendix 00

Public Employment (men, ITT)

Introduction Background Theoretical Model Identification Strategy 0000000 Empirical Results Ocnclusion Appendix 00000000 Oc

Private Employment (men, ITT)

Laura Zimmermann (UGA)

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix
				00000		

Ex Post Insurance: Men

	employment log private					
Specification	public	private	family	tota	wage	
Quadratic Flexible Slope	-0.0057	-0.0381	0.0389	-0.0051	-0.0056	
	(0.0107)	(0.0404)	(0.0458)	(0.0326)	(0.0677)	
NREGS*negative shock	0.0299**	-0.0223	-0.0085	0.0021	-0.0595	
	(0.0152)	(0.0337)	(0.0414)	(0.0316)	(0.0717)	
Ν	532	532	532	532	504	
outcome mean	0.0115	0.3380	0.4681	0.8176	4.1786	
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered at district						
vel. negative shock: negative deviation of rainfall from expected rainfall.						

Women

ITT Results (Restricted Sample)

	employment log private							
Specification	public	private	family	tota	wage			
Panel A: men								
Quadratic Flexible Slope	0.0022	-0.0665**	0.0646*	0.0056	-0.0357			
	(0.0053)	(0.0309)	(0.0369)	(0.0248)	(0.0555)			
Ν	863	863	863	863	811			
outcome mean	0.0076	0.3173	0.4963	0.8212	4.1252			
Panel B: women								
Quadratic Flexible Slope	-0.0041	0.0035	0.0229	0.0248	-0.0954			
	(0.0050)	(0.0232)	(0.0365)	(0.0429)	(0.1017)			
Ν	863	863	863	863	530			
outcome mean	0.0064	0.1366	0.2290	0.3721	3.6326			
Note: *** p<0.01, ** p<	Jote: *** p<0.01, ** p<0.05, * p<0.1 Standard errors clustered at district							
evel. An observation is a	evel. An observation is a district in a given season. The log private wage in							

column 4 is conditional on private employment.

Robustness TOT Meta Analysis Index Individual

Estimates robust to other specifications

- Exclusion of baseline controls
- Inclusion of additional controls
- Other parametric specifications
- Different bandwidth choices
- Use of population weights
- Donut-hole approach
- Meta analysis
- Change of running variable
- Individual level

Estimates robust to other specifications

- Exclusion of baseline controls
- Inclusion of additional controls
- Other parametric specifications
- Different bandwidth choices
- Use of population weights
- Donut-hole approach
- Meta analysis
- Change of running variable
- Individual level

Effect size consistent with administrative data Administrative

Introduction 0	Background 00	Theoretical Model 00	Identification Strategy	Empirical Results 00000	Conclusion ●○	App en dix
Conclu	sion					

- RD analysis of impact of NREGS on labor-market outcomes
- NREGS functions as a safety net
 - Ex post effect
 - Higher take-up after negative rainfall shock
 - Ex ante effect
 - Low NREGS take-up
 - Move from private to family employment
 - If at all, wage impacts usually negative

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix
O	00	00	00000000	00000	○●	
Conclu	sion					

- Implications: NREGS
 - No increase in local labor-market competitiveness
 - No better enforcement of minimum-wage laws
 - Incentivizes self-employment

l ntroduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix
0	00	00	00000000	00000	○●	
Conclu	sion					

- Implications: NREGS
 - No increase in local labor-market competitiveness
 - No better enforcement of minimum-wage laws
 - Incentivizes self-employment
- But are welfare benefits big enough to justify high annual expenditures?
 - No large effect on household expenditures
 - Need information on household production
 - Short-run effects

l ntroduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix
0	00	00	00000000	00000	○●	
Conclu	sion					

- Implications: NREGS
 - No increase in local labor-market competitiveness
 - No better enforcement of minimum-wage laws
 - Incentivizes self-employment
- But are welfare benefits big enough to justify high annual expenditures?
 - No large effect on household expenditures
 - Need information on household production
 - Short-run effects

Thank you!

Permissible NREGS Project Categories

- Water conservation and water harvesting
- Orought proofing, including afforestation and tree plantation
- Irrigation canals, including micro and minor irrigation works
- Provision of irrigation facility to land owned by poor/low-caste households
- Renovation of traditional water bodies
- Land development
- Ilood control and protection works
- Q Rural connectivity to provide all-weather access
- Any work that may be notified by the Central Government in consultation with the State Government

Maximum emphasis is supposed to be on water conservation (Government of India 2010).

 Back

46% Water conservation 20% Provision of irrigation facility to low-caste households 18% Land development 15% Rural connectivity 1% Any other activity

Private employment ℓ is less flexible than NREGS employment

- Labor contracts
- Seasonality of private-sector jobs

If ℓ can also be taken up after shock has been realized

- NREGS less attractive as ex post insurance
- More direct substitution between ℓ and NREGS work

Private employment ℓ is less risky than family employment

- Labor contracts
- Spot market as long as work is usually available
- Private-sector wage is constant for usual rainfall shocks (below 5 standard deviations)
- Wage rigidity in the private sector (Kaur 2012)
- If ℓ is as affected/more affected by shock as family employment
 - Lower incentive to work in private sector given the expected wage

Household derives utility from from self-employment and total income earned

- Anecdotal evidence (avoid exploitation, choose how to spend time)
- Self-employment is seen as preferable to private-sector work (Bandiera et al. 2013, Banerjee et al. 2011)
- Ensures interior solution

Once a household chooses the fraction of time to spend on NREGS employment after the weather shock has occurred, l, n_1 , and y are fixed. The household therefore chooses n_2 to maximize

$$\max_{n_2} \alpha v((T - I - n_1)(1 - n_2)) + (1 - \alpha)u((T - I - n_1)(1 - n_2))v$$

$$+(T-l-n_1)n_2\overline{w}+lw+n_1\overline{w})$$

Leading to the first-order condition

$$\alpha v'(T-l-n_1)(1-n_2) = (1-\alpha)u'((T-l-n_1)(1-n_2)y+(T-l-n_1)n_2\overline{w}$$
$$+ lw + n_1\overline{w})(\overline{w} - y)$$

App en dix

Introduction Background Theoretical Model Identification Strategy Empirical Results Conclusion on Best-Response Function

Once a household chooses the fraction of time to spend on NREGS employment after the weather shock has occurred, l, n_1 , and y are fixed. The household therefore chooses n_2 to maximize

$$\max_{n_2} \alpha v((T - l - n_1)(1 - n_2)) + (1 - \alpha)u((T - l - n_1)(1 - n_2))v$$

$$+(T-l-n_1)n_2\overline{w}+lw+n_1\overline{w})$$

Leading to the first-order condition

$$\alpha v'(T-l-n_1)(1-n_2) = (1-\alpha)u'((T-l-n_1)(1-n_2)y + (T-l-n_1)n_2\overline{w}$$

+ $|w + n_1 \overline{w})(\overline{w} - y)$ Define the shock y_0 as the shock at which the first-order condition implies $n_2^*=0$. Then FOC implies n_2^* for all shocks with income of y_0 or less. For all larger values, optimal n_2 is zero.

App en dix

Introduction Background Theoretical Model Identification Strategy Empirical Results Conclusion Appendix 0 00 00 0000000 00000 00 0000000 00

Household-Maximization Solution

A solution to the FOC exists if
$$(T-j)\frac{\partial^2 n_2^*}{\partial j^2} - 2\frac{\partial n_2^*}{\partial j} > 0$$
 and

$$-\frac{u''((T-j)((1-n_2^*)y+n_2^*\overline{w})+j\widetilde{w})}{u'((T-j)((1-n_2^*)y+n_2^*\overline{w})+j\widetilde{w})} >$$
 $(\overline{w}-y)((T-j)\frac{\partial^2 n_2^*}{\partial j^2} - 2\frac{\partial n_2^*}{\partial j})\frac{\partial^2 n_2^*}{\overline{w}-y+(\overline{w}-y)((T-j)\frac{\partial n_2^*}{\partial j}-n_2^*)^2}$
or if $(T-j)\frac{\partial^2 n_2^*}{\partial j^2} - 2\frac{\partial n_2^*}{\partial j} < 0$ and

$$-\frac{v''((T-j)(1-n_2^*))}{v'((T-j)(1-n_2^*))} > \frac{-((T-j)\frac{\partial^2 n_2^*}{\partial j^2} - 2\frac{\partial n_2^*}{\partial j})}{(T-j)\frac{\partial n_2^*}{\partial j^2} - 2\frac{\partial n_2^*}{\partial j}}$$

$$-\frac{1}{v'((T-j)(1-n_2^*))} > \frac{1}{(1-n_2^*+(T-j)\frac{\partial n_2^*}{\partial j})^2}$$

holds for all possible values of y

l ntroduction ○	Background	Theoretical Model 00	Identification Strategy	Empirical Results 00000	Conclusion 00	App en dix
Model	Extensi	ons				

- NREGS 100-day cap
 - decreases attractiveness ex post risk-coping tool
 - attenuates labor-market impacts
- Implementation problems
 - rationing works like cap
 - corruption works like lower wage
 - attenuates labor-market impacts
- Private-sector wage variability
 - the more variable the wage is to shocks, the less it is a good risk-mitigation tool
 - increases private-sector impacts of NREGS

Model Prediction Assumptions

- Safety net predictions:
 - predictions clearest if $\overline{w} < w$, implies that n_2^* and l are substitutes
 - $\frac{-\partial n_2^*}{\partial l} < \frac{1-n_2^*}{T-l}$ (relatively poor substitutes)
 - then private employment falls

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix

• Model assumes fixed private-sector wage

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix

- Model assumes fixed private-sector wage
- Little consensus about model of Indian casual private sector
 - e.g. Basu 2002, Basu and Felkey 2008, Basu forthcoming, Besley and Coate 1992, Kaur 2012
- Under standard assumptions (perfect competition, decreasing marginal product)
 - Wage rises
 - Attenuates negative private employment effect
- Wage also rises if NREGS enforces minimum-wage laws

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix

- Model assumes fixed private-sector wage
- Little consensus about model of Indian casual private sector
 - e.g. Basu 2002, Basu and Felkey 2008, Basu forthcoming, Besley and Coate 1992, Kaur 2012
- Under standard assumptions (perfect competition, decreasing marginal product)
 - Wage rises
 - Attenuates negative private employment effect
- Wage also rises if NREGS enforces minimum-wage laws
- Wage could also fall, e.g.
 - Wage equals marginal product, independent of number of workers
 - Heterogeneity in worker productivity
 - Higher-productivity workers have higher lpha

ction Background Th 00 00	eoretical	ooo	00000	egy Empirica	OO
		actua	NREGS	prediction	success rate
	Ν	Phase 1	Phase 2	Phase 1	Phase 2
Andhra Pradesh	21	13	6	0.90	0.75
Assam	23	7	6	0.91	0.75
Bihar	36	22	14	0.81	1.00
Chhattisgarh	15	11	3	0.73	1.00
Gujarat	20	6	3	0.80	0.93
Haryana	18	2	1	0.72	0.94
Jharkhand	20	18	2	0.85	1.00
Karnataka	26	5	6	0.88	0.52
Kerala	10	2	2	0.77	1.00
Madhya Pradesh	42	18	10	0.76	0.88
Maharashtra	30	12	6	0.93	0.56
Orissa	30	19	5	0.73	0.91
Punjab	15	1	2	1.00	0.93
Rajasthan	31	6	6	0.90	0.72
Tamil Nadu	26	6	4	0.88	0.95
Uttar Pradesh	64	22	17	0.88	0.79
West Benga	17	10	7	0.76	1.00
Tota	447	180	100	0.84	0.82

Laura Zimmermann (UGA)

Indian Employment Guarantee

ction Background	Theoretical	Model	ldentifica	tion Strat	egy Empi	rical Result	s Conc	usion Appendi
			0000000					
		emplo	yment		log private			log per capita
Specification	public	priv at e	family	t ot al	wage	education	land	exp en dit ur e
Panel A: men								
Lin ear	-0.0006	-0.0188	0.0077	-0.0111	0.0596	-0.16*	83.97	-0.0015
	(0.0024)	(0.0187)	(0.0212)	(0.0201)	(0.0398)	(0.09)	(123.03)	(0.0314)
Linear Flexible Slope	-0.0007	-0.0187	0.0077	-0.0109	0.0596	-0.16*	80.19	-0.0019
	(0.0024)	(0.0187)	(0.0212)	(0.0199)	(0.0397)	(0.09)	(118.21)	(0.0314)
Quadratic	-0.0009	-0.0155	0.0088	-0.0069	0.0527	-0.17*	31.01	-0.0116
	(0.0023)	(0.0187)	(0.0210)	(0.0194)	(0.0396)	(0.09)	(118.39)	(0.0315)
Quadratic Flexible Slope	-0.0013	-0.0365	0.0297	-0.0070	0.0805	-0.04	51.60	-0.0248
	(0.0040)	(0.0265)	(0.0278)	(0.0277)	(0.0542)	(0.11)	(147.20)	(0.0403)
Ν	1063	1063	1063	1063	1007	1063	1063	1063
out come mean	0.0025	0.3109	0.5529	0.8663	4.0352	3.32	1099.63	6.34
Panel B: women								
Linear	0.0018	0.0005	0.0459	0.0503	0.0608	-0.17*	53.70	-0.0037
	(0.0012)	(0.0132)	(0.0303)	(0.0336)	(0.0494)	(0.09)	(130.69)	(0.0317)
Linear Flexible Slope	0.0018	0.0003	0.0457	0.0500	0.0609	-0.17*	49.72	-0.0041
	(0.0012)	(0.0130)	(0.0302)	(0.0333)	(0.0495)	(0.09)	(126.00)	(0.0317)
Quadratic	0.0018	-0.0011	0.0420	0.0450	0.0615	-0.18**	-3.91	-0.0133
	(0.0012)	(0.0129)	(0.0298)	(0.0330)	(0.0494)	(0.09)	(123.27)	(0.0319)
Quadratic Flexible Slope	0.0047**	-0.0170	0.0278	0.0183	0.1324**	-0.11	- 3.70	-0.0265
	(0.0020)	(0.0162)	(0.0394)	(0.0440)	(0.0645)	(0.11)	(155.16)	(0.0400)
Ν	1063	1063	1063	1063	656	1063	1063	1063
outcome mean	0.0018	0.1400	0.3059	0.4480	3.6807	2.34	1134.90	6.35

Note: *** p<0.01, ** p<0.05, * p<0.1 Standard errors clustered at district level.

Parametric regressions with different levels of flexibility. Column 4 conditional on private employment.

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix

	Men				Women			
	phase	2	phase	3	phase	2	phase	3
		Ν		Ν		Ν		Ν
private employment	0.2975	396	0.2938	668	0.1397	396	0.1332	668
family employment	0.5810	396	0.5271	668	0.2559	396	0.3281	668
public employment	0.0038	396	0.0015	668	0.0028	396	0.0013	668
daily wage (total)	52.75	387	65.71	645	38.19	306	45.93	504
daily wage (private)	52.77	386	65.78	645	37.69	303	45.76	497
daily wage (public)	53.44	18	63.54	22	53.42	12	52.32	17

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix
	00	00	0000000	00000	00	

Ex Post Insurance: Women

		emplo	yment		log private		
Specification	public	private	family	tota	wage		
Panel A: rainfall shock							
Quadratic Flexible Slope	-0.0163*	0.0100	0.0404	0.0304	-0.0215		
	(0.0094)	(0.0284)	(0.0385)	(0.0433)	(0.1032)		
NREGS*negative shock	0.0280	-0.0277	0.0067	0.0149	-0.0049		
	(0.0172)	(0.0278)	(0.0396)	(0.0456)	(0.1201)		
Panel B: rainfall variance							
Quadratic Flexible Slope	-0.0101	-0.0037	0.0442	0.0289	-0.0202		
	(0.0103)	(0.0288)	(0.0414)	(0.0458)	(0.1124)		
NREGS*risky	0.0078	0.0056	-0.0042	0.0107	0.0034		
	(0.0072)	(0.0233)	(0.0263)	(0.0318)	(0.0908)		
N	532	532	532	532	321		
outcome mean	0.0093	0.1282	0.2114	0.3489	3.7233		
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors clustered							
at district level. negat	ive shock	: negativ	e deviati	on of rain	nfall from		
expected rainfall. risky	∕: district	s with ab	ove-med	ian varia	nce of		

rainfall.

l ntroduction ○	Background 00	Theoretical Model	Identification Strategy	Empirical Results 00000	Conclusion 00	App en dix

Meta analysis results

			log private		
Specification	public	private	family	tota	wage
Linear (simple average)	-0.0021	-0.0348**	0.0302	-0.0067	0.0153
	(0.4926)	(0.0283)	(0.1113)	(0.6368)	(0.6214)
Quadratic (simple average)	0.0029	-0.0738***	0.0693***	-0.0017	-0.0156
	(0.3468)	(0.0001)	(0.0037)	(0.9108)	(0.6865)
Linear (pop. weighted)	-0.0016	-0.0299*	0.0374*	0.0059	0.0111
	(0.5661)	(0.0632)	(0.0606)	(0.6802)	(0.7301)
Quadratic (pop. weighted)	-0.0003	-0.0501***	0.0616***	0.0113	-0.0059
аналана (р. р. н 8)	(0.9297)	(0.0051)	(0.0067)	(0.4549)	(0.8729)
Ν	` 863 ´	`863 ´	`863 ´	`863 ´	`811 ´
Back					

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix
0	00	00	0000000	00000	00	

TOT results

		employment			
Specification	public	private	family	total	wage
Panel A: men					
Linear	0.0027	-0.0799	0.0579	-0.0157	-0.0093
	(0.0085)	(0.0508)	(0.0583)	(0.0417)	(0.0847)
Linear Flexible Slope	0.0025	-0.0805	0.0591	-0.0155	-0.0087
	(0.0086)	(0.0507)	(0.0576)	(0.0417)	(0.0853)
Quadratic	0.0017	-0.0875*	0.0696	-0.0130	-0.0165
	(0.0089)	(0.0528)	(0.0608)	(0.0439)	(0.0871)
Quadratic Flexible Slope	0.0082	-0.1056*	0.0603	-0.0328	-0.1203
	(0.0092)	(0.0567)	(0.0631)	(0.0438)	(0.1071)
N	1063	1063	1063	1063	1007
outcome mean	0.0069	0.3279	0.4846	0.8195	4.1208
Panel B: women					
Linear	0.0030	-0.0081	0.0376	0.0318	0.0091
	(0.0100)	(0.0376)	(0.0594)	(0.0683)	(0.1439)
Linear Flexible Slope	0.0030	-0.0078	0.0370	0.0311	0.0063
	(0.0101)	(0.0379)	(0.0596)	(0.0684)	(0.1410)
Quadratic	0.0035	-0.0049	0.0255	0.0239	0.0115
	(0.0106)	(0.0388)	(0.0605)	(0.0698)	(0.1498)
Quadratic Flexible Slope	0.0019	-0.0161	0.0906	0.0792	-0.1220
	(0.0118)	(0.0394)	(0.0687)	(0.0800)	(0.1887)
N	1063	1063	1063	1063	656
outcome mean	0.0053	0.1309	0.2285	0.3647	3.6488

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix
0	00	00	0000000	00000	00	

ITT results

		emplo	yment		log private
Specification	public	private	family	total	wage
Panel A: men					
Linear	0.0012	-0.0351*	0.0253	-0.0069	-0.0041
	(0.0038)	(0.0208)	(0.0247)	(0.0185)	(0.0377)
Linear Flexible Slope	0.0011	-0.0351*	0.0256	-0.0068	-0.0041
	(0.0038)	(0.0208)	(0.0244)	(0.0185)	(0.0377)
Quadratic	0.0007	-0.0369*	0.0292	-0.0055	-0.0070
	(0.0038)	(0.0204)	(0.0243)	(0.0187)	(0.0375)
Quadratic Flexible Slope	0.0018	-0.0522*	0.0302	-0.0165	-0.0196
	(0.0045)	(0.0273)	(0.0331)	(0.0231)	(0.0500)
N	1063	1063	1063	1063	1007
outcome mean	0.0069	0.3279	0.4846	0.8195	4.1212
Panel B: women					
Linear	0.0013	-0.0035	0.0166	0.0140	0.0041
	(0.0044)	(0.0166)	(0.0259)	(0.0301)	(0.0660)
Linear Flexible Slope	0.0013	-0.0034	0.0161	0.0137	0.0038
	(0.0044)	(0.0166)	(0.0256)	(0.0298)	(0.0663)
Quadratic	0.0015	-0.0020	0.0108	0.0101	0.0050
	(0.0045)	(0.0165)	(0.0255)	(0.0296)	(0.0660)
Quadratic Flexible Slope	-0.0026	-0.0073	0.0340	0.0263	-0.0706
	(0.0043)	(0.0210)	(0.0334)	(0.0385)	(0.0925)
N	1063	1063	1063	1063	656
outcomemean	0.0053	0.1309	0.2285	0.3647	3.6488

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix
0	00	00	0000000	00000	00	

ITT Results Index

public 0.0015 (0.0032)	private -0.0135	family	total	wage
0.0015 (0.0032)	-0.0135	0.0060		
0.0015 (0.0032)	-0.0135	0 0000		
(0.0032)		0.0000	-0.0041	-0.0334
	(0.0174)	(0.0201)	(0.0151)	(0.0324)
0.0007	-0.0145	0.0123	0.0005	-0.0311
(0.0033)	(0.0172)	(0.0197)	(0.0155)	(0.0329)
0.0007	-0.0201	0.0230	0.0055	-0.0324
(0.0037)	(0.0181)	(0.0213)	(0.0163)	(0.0356)
0.0000	-0.0353**	0.0338	-0.0183	-0.0044
(0.0045)	(0.0178)	(0.0250)	(0.0176)	(0.0383)
1063	1063	1063	1063	1007
0.0069	0.3279	0.4846	0.8195	4.1212
0.0023	-0.0077	0.0231	0.0164	-0.0379
(0.0048)	(0.0132)	(0.0221)	(0.0251)	(0.0551)
0.0021	-0.0046	0.0284	0.0248	-0.0384
(0.0050)	(0.0132)	(0.0216)	(0.0243)	(0.0550)
0.0018	0.0012	0.0482**	0.0504*	-0.0412
(0.0053)	(0.0141)	(0.0222)	(0.0257)	(0.0581)
0.0006	-0.0191	0.0417*	0.0248	-0.0544
(0.0057)	(0.0138)	(0.0253)	(0.0294)	(0.0708)
1063	1063	1063	1063	656
0.0053	0.1309	0.2285	0.3647	3.6488
	(0.003) (0.0037) 0.0000 (0.0045) 1063 0.0023 (0.0048) 0.0021 (0.0053) 0.0018 (0.0053) 0.0066 (0.0057) 1063 0.0053	$\begin{array}{c} (0.003) & (-0.0201 \\ (0.0037) & (-0.0201 \\ (0.0037) & (0.0181) \\ \hline 0.0000 & -0.0353^{**} \\ (0.0045) & (0.0178) \\ \hline 1063 & 1063 \\ 0.0069 & 0.3279 \\ \hline 0.0023 & -0.0077 \\ (0.0048) & (0.0132) \\ 0.0021 & -0.0046 \\ (0.0050) & (0.0132) \\ 0.0012 & 0.0012 \\ (0.0053) & (0.0141) \\ 0.0006 & -0.0191 \\ (0.0057) & (0.0138) \\ \hline 1063 & 1063 \\ 0.0053 & 0.1309 \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Laura Zimmermann (UGA)

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion Appendix
	00				

ITT Results Individual Level

		employ	ment		log private
Specification	public	private	family	total	wage
Panel A: men					
Linear	-0.0025	-0.0286	0.0341	0.0031	0.0472
	((0.0039))	(0.0208)	(0.0253)	(0.0185)	(0.0417)
Linear Flexible Slope	-0.0024	-0.0286	0.0339	0.0028	0.0468
	(0.0039)	(0.0209)	(0.0250)	(0.0182)	(0.0416)
Quadratic	-0.0031	-0.0296	0.0391	0.0065	0.0454
	(0.0040)	(0.0205)	(0.0251)	(0.0184)	(0.0418)
Quadratic Flexible Slope	-0.0031	-0.0531**	0.0595*	0.0033	0.0441
	(0.0056)	(0.0252)	(0.0320)	(0.0211)	(0.0480)
N	37224	37224	37224	37224	12062
outcome mean	0.0082	0.3261	0.4756	0.8099	4.0473
Panel B: women					
Linear	0.0009	-0.0025	0.0254	0.0238	-0.0231
	(0.0036)	(0.0171)	(0.0251)	(0.0296)	(0.0528)
Linear Flexible Slope	0.0010	-0.0032	0.0274	0.0252	-0.0220
	(0.0035)	(0.0172)	(0.0250)	(0.0295)	(0.0537)
Quadratic	8000.0	-0.0015	0.0199	0.0192	-0.0257
	(0.0036)	(0.0172)	(0.0248)	(0.0295)	(0.0532)
Quadratic Flexible Slope	-0.0027	-0.0125	0.0409	0.0257	-0.0585
	(0.0041)	(0.0206)	(0.0327)	(0.0381)	(0.0606)
N	41978	41978	41978	41978	5339
outcome mean	0.0046	0.1234	0.2106	0.3385	3.5428

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix
O	00	00	00000000	00000	00	
Discuss	sion					

Does NSS data adequately capture public employment?

- Can rule out take-up effects larger than 1pp
- Specific questions on public employment, NREGS employment

Introduction 0	Background 00	Theoretical Model	Identification Strategy 00000000	Empirical Results 00000	Conclusion 00	App en dix
Discuss	sion					

Does NSS data adequately capture public employment?

- Can rule out take-up effects larger than 1pp
- Specific questions on public employment, NREGS employment
- Annual administrative records for 2007/08
 - 1.4bn person-days of NREGS employment (1.78m projects) in Phase 1 and Phase 2 districts
 - implication: on average 0.0764 NREGS workdays per person per week in typical district

l ntroduction 0	Background 00	Theoretical Model	Identification Strategy 00000000	Empirical Results 00000	Conclusion 00	App en dix
Discuss	sion					

Does NSS data adequately capture public employment?

- Can rule out take-up effects larger than 1pp
- Specific questions on public employment, NREGS employment
- Annual administrative records for 2007/08
 - 1.4bn person-days of NREGS employment (1.78m projects) in Phase 1 and Phase 2 districts
 - implication: on average 0.0764 NREGS workdays per person per week in typical district
- NSS data
 - average public-works workdays per person per week in typical district (Phase 1 and Phase 2): 0.0789
 - about 4 days of employment per person per year

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix

DID Results (men)

	employment			private wage		
	public	private	family	cond.	cond. log	uncond.
Actual Treatment						
NREGS*post period	0.0083**	0.0060	0344**	-0.47	0.0100	0.60
	(.0036)	(.0160)	(.0173)	(1.73)	(.0297)	(1.25)
NREGS	0.0019	-0.0019	.0319**	-4.17***	0741***	-1.71**
	(.0018)	(.0122)	(.0137)	(1.55)	(.0297)	(.82)
post period	0.0014	0.0147	0555***	5.76***	.0832***	2.65***
	(.0009)	(.0103)	(.0103)	(1.20)	(.0179)	(.91)
Predicted Treatment						
NREGS*post period	.0056*	0.0141	-0.0405**	-0.98	-0.0075	0.64
	(.0031)	(.0159)	(.0165)	(1.72)	(.0289)	(1.24)
NREGS	-0.0022	-0.0192	.0404***	-4.27***	0664**	-2.34***
	(.0016)	(.0121)	(.0142)	(1.58)	(.0283)	(.86)
post period	0.0022	0.0114	0523***	5.98***	.0900***	2.62***
	(.0016)	(.0104)	(.0110)	(1.25)	(.0188)	(.93)
Ν	2126	2126	2126	2018	2014	2126
outcome mean	0.0047	0.3194	0.5188	63.59	4.08	20.42
N outcome mean	2126 0.0047	2126 0.3194	2126 0.5188	2018	2014 4.08	2126

Background Discussion

Laura Zimmermann (UGA)

Introduction	Background	Theoretical Model	Identification Strategy	Empirical Results	Conclusion	App en dix

DID Results (women)

	employment			private wage		
	public	private	family	cond.	cond.log	uncond.
Actual Treatment						
NREGS*post period	.0075**	0.0035	0.0049	-1.40	-0.0126	0.30
	(.0035)	(.0109)	(.0174)	(2.05)	(.0461)	(.52)
NREGS	0.0028	0.0115	-0.0167	-2.24	-0.0458	0.12
	(.0019)	(.0102)	(.0186)	(1.47)	(.0369)	(.45)
post period	0.0007	-0.0104	-0.0793***	2.01	-0.0058	-0.35
	(.0005)	(.0064)	(.0119)	(1.60)	(.0288)	(.33)
Predicted Treatment						
NREGS*post period	0.0043	0.0073	0.0159	-2.72	-0.0249	0.35
	(.0031)	(.0104)	(.0173)	(2.10)	(.0451)	(.51)
NREGS	-0.0001	0.0176*	0.0073	-4.42***	- 1013***	0.15
	(.0014)	(.0099)	(.0198)	(1.45)	(.0358)	(.44)
post period	0.0018	0119*	0837***	2.69	0.0004	-0.38
	(.0012)	(.0069)	(.0122)	(1.74)	(.0305)	(.35)
Ν	2126	2126	2126	1326	1312	2126
outcome mean	0.0036	0.1354	0.2672	41.99	3.64	5.22
Background Discussion						

Laura Zimmermann (UGA)

- Typical DID results stress substantial private-sector wage increases, NREGS take-up (e.g. Azam 2012, Berg et al. 2012, Imbert and Papp 2013)
- Differences to my results could be driven by sample composition, data, empirical specifications

- Typical DID results stress substantial private-sector wage increases, NREGS take-up (e.g. Azam 2012, Berg et al. 2012, Imbert and Papp 2013)
- Differences to my results could be driven by sample composition, data, empirical specifications
- Replication of results possible, differences driven by
 - choice of empirical specification: Imbert and Papp 2013 (seasonality), Berg et al. 2012 (high implementation quality)
 - sample composition: Azam 2012 (casual workers)

So differences mostly explained by emphasis on different subgroups of districts or individuals. Overall patterns consistent with my results

