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Abstract

This essay applies market microstructure invariance to fixed income mar-
kets. An invariance-based illiquidity measure calibrated from stock market
data is extrapolated to the markets for Treasury and corporate fixed income
securities. By consistently incorporating both leverage neutrality, this illiquid-
ity measure explains both trading liquidity and funding liquidity. Invariance
predicts that Treasury markets are about 55 times more liquid than markets
for individual corporate bonds and operate about 3,000 times more quickly.
Invariance is used to discuss repo haircuts and the flash rally of October 15,
2014.
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The purpose of this paper is to examine trading liquidity and funding liquidity in
fixed income markets from the perspective of market microstructure invariance. The
principles of market microstructure invariance imply an easily calculated dimension-
less illiquidity measure, denoted 1/𝐿. The quantity 1/𝐿 is easy to calculate because
it depends only on dollar volume, returns volatility, and two “invariant” scaling con-
stants which are the same for all assets. The main idea of this paper is that 1/𝐿 is a
simple, convenient measure of both trading liquidity and funding liquidity. Trading
liquidity and funding liquidity are two sides of the same coin, measured in the same
way.

The application of microstructure invariance is particularly interesting in the con-
text of fixed income markets because liquidity varies greatly across different fixed
income instruments. The market for on-the-run Treasury notes and related futures
contracts is one of the most liquid in the world. Corporate bonds, by contrast, are
highly illiquid. Trading volume in a typical corporate bond may be about 100,000
times less than the most liquid Treasury market. In its simplest terms, microstructure
invariance implies a scaling law with exponents of 1/3; this scaling law relates illiq-
uidity to dollar volume and volatility. The wide variations in volume seen across fixed
income markets provides a simple way to examine whether the scaling laws associated
with market microstructure invariance give economically reasonable outcomes.

The illiquidity measure 1/𝐿 is dimensionless. As a measure of trading liquidity,
1/𝐿 is by definition scaled to measure the average transaction cost of executing a
risk-transferring “bet” (meta-order) in a market, expressed as a fraction of the value
traded (basis points). Its reciprocal 𝐿, which measures liquidity, is proportional
to the dollar size of bets which take place in the market. As a measure of funding
liquidity, we claim that 1/𝐿, in addition to being proportional to the cost of liquidating
defaulted collateral, is also proportional to the haircut that makes a repo safe and
to the standard deviation of returns over intervals of time at which it is practical to
mark assets to market. This happens because 1/𝐿 is proportional to the square root
of the returns between the arrival of one bet in the market and the next. Assuming
bets are liquidated in “business time” scales proportional to the rates at which bets
arrive, this makes 1/𝐿 proportional to the standard deviation of returns over the
horizon that a speculative position would be liquidated in the event of bankruptcy.
A haircut proportional to 1/𝐿 therefore provides similar protection to a liquidator of
defaulted collateral both for liquid collateral with a low value of 1/𝐿 and for illiquid
collateral with a high value for 1/𝐿.

Market microstructure invariance deals with time and leverage in a simple, inter-
nally consistent manner which incorporates leverage neutrality in a manner analogous
to Modigliani-Miller irrelevance. Since leverage is related to fixed income markets,
fixed income markets provide a particularly clean environment for thinking about
microstructure invariance. Leverage neutrality is a minimal requirement for any liq-
uidity measure which deals cleanly with funding liquidity or trading liquidity.

The plan of this paper is as follows.
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We first compare equity markets with fixed income markets.
We next define and explain the dimensionless liquidity measure 1/𝐿 and a related

measure 𝛾 defined as the rate at which bets arrive into the market in calendar time.
Two invariant constants are chosen to be consistent with bet size and transition costs
estimated by Kyle and Obizhaeva (2016) using a dataset of portfolio transition orders.

To examine whether the principle of market microstructure invariance leads to eco-
nomically reasonable results, we then extrapolate the liquidity measures for stocks to
bonds by keeping the same same invariant constants but substituting dollar volume
and returns variance for Treasury or corporate bonds, respectively, for dollar volume
and returns volatility for stocks. As a measure of trading liquidity, these extrapola-
tions suggest that the average bet in on-the-run 10-year Treasury notes or futures has
a market value of about $20 million and the market impact cost of executing a bet
of $120 million is about 1 basis point. Individual corporate bonds are about 55 times
less liquid than on-the-run Treasuries. The average bet has a market value of about
$342,000, and the market impact cost of executing a $5 million bet is about 50 basis
points.

Funding liquidity is closely related to the speed with which bets are executed in
the market because lenders worry about potential losses they might suffer as a result
of liquidating defaulted collateral. Market microstructure invariance implies that the
speed of a market is proportional to 𝜎2 · 𝐿2, where 𝜎 measures an asset’s returns
standard deviation. Our calibration implies that the Treasury market operates about
552 ≈ 3, 000 times faster than the market for a typical corporate bond. The market
for 10-year Treasuries has about 9,000 bets per day, and a typical corporate bond has
about 3 bets per day. Using repo haircuts as a measure of funding liquidity, these
calculations imply higher repo haircuts for corporate bonds than for Treasuries.

To understand fire sales, it is necessary to understand how speeding up the liq-
uidation of collateral affects temporary price impact. We supplement invariance by
using intuition from the smooth trading model of Kyle, Obizhaeva and Wang (2016),
which assumes that temporary price impact is proportional to the speed with which
sales occur. This fire-sale approach is applied to the flash rally of October 15, 2014,
using the flash crash of May 6, 2010, as a “model” for the event. We estimate that
an order to purchase $1.3 billion of 10-year Treasuries over a 12-minute period would
temporarily push 10-year Treasury prices up by 1.20%.

The illiquidity measure 1/𝐿 explains why haircuts for illiquid corporate bonds are
higher than haircuts for Treasuries and not that different from haircuts for equities.
While corporate bonds may have low returns volatility, their low liquidity implies a
long liquidation process in the event of repo default. In the tri-party repo market,
haircuts for corporate bonds are not as high as invariance might imply. Consistent
with Copeland, Martin and Walker (2010), this suggests that the repo run which
disrupted the tri-party repo market occurred because cash lenders relied on the unse-
cured credit-worthiness of the borrower to justify low haircuts, not the expected cost
of liquidating defaulted collateral.
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A bank is similar to a tri-party repo which operates in slow motion. Capital
requirements are like haircuts, and banking regulators supervise the liquidation of
failed banks because the lenders lack the ability to do so. Bank assets like business
loans and real estate development loans have very high illiquidity 1/𝐿, much greater
than the illiquidity of corporate bonds; they are typically not traded at all but rather
held to maturity. Thus, the liquidation process for failed banks is likely to take years,
not days of months.

To summarize, microstructure invariance can be used both to measure how illiq-
uidity varies across different classes of fixed income assets and to explain why trading
liquidity and funding liquidity are measured in the same way.

1 Bond Markets

From the perspective of market microstructure, bond markets differ from equity mar-
kets in several ways.

Companies tend to issue many different bonds but have one important class of
equity. Governments also have many different issues outstanding. As a result, equity
liquidity is increased as a result of having one pool of liquidity focussed around one
class of common stock while bond liquidity is reduced as a result of having numerous
outstanding bond issues with different coupons, maturities, collateral, seniority, and
other covenants. In bond markets, recently issued “on-the-run” bonds tend to have
more liquidity than older “off-the-run” bonds.

Trading Liquidity. Fixed income markets create trading liquidity by facilitating
the exchange of risks. These risks are associated with overall levels of riskfree (Trea-
sury) rates, overall credit market conditions governing spreads between Treasuries
securities and investment-grade or non-investment-grade bonds, default risks for spe-
cific issuers, and other credit risks related to the collateral, seniority, and covenants in
specific bond issues. Trading a specific issue of a corporate bond involves exchanging
interest rate risk, overall credit risk, specific company risk, and issue specific risks
associated with the specific bond. Markets can un-package all of these risks from the
specific bond issue and trade them separately, for example, as T-bond futures, CDX
derivatives, specific issue CDS, and the specific bond itself. In this paper, we abstract
from these interesting liquidity factors by focussing on only one liquidity factor for
each asset class. The costs of exchanging these risks relate to trading liquidity.

The dramatic difference in liquidity between Treasury bonds and corporate bonds
has important implications for the evolution and organization of fixed income markets.
Traders like liquidity and seek out liquid venues for trading speculative instruments.
The huge liquidity of the 10-year Treasury market attracts speculative and non-
speculative traders to it. Central banks hold Tresuries for their liquidity. Since
the liquidity of Treasuries attracts traders away from other less liquid markets, the
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tendency for liquidity to pool in 10-year Treasuries not only increases the liquidity of
10-year Treasuries but also reduces the liquidity of other fixed income markets. This
tendency of liquidity to pool explains why off-the-run Treasuries have dramatically
lower liquidity than on-the run Treasuries and why corporate bonds do not trade
much at all.

Funding Liquidity. Fixed income markets create funding liquidity by separating
the collateral value of the securities from their risks, essentially creating safe assets
out of risky ones. The collateral value can be separated from the assets themselves in
several ways: repo markets, securitization, and banks. Safe assets are not necessarily
liquid.

Microstructure invariance incorporates the assumption of leverage neutrality. In
effect, the illiquidity measure 1/𝐿 introduced below separates trading liquidity from
funding liquidity by making the assumption that adding or subtracting cash from a
risky position changes proportionately the trading cost measured in basis points so
that the leverage does not affect the dollar cost of exchanging a risk. This makes it
possible to add a time dimension to liquidity relating illiquidity to trading volume.

The repo market decomposes a bond into a safe overnight loan (collateralized by
the bond) and a risky levered position which bears the overwhelming majority of the
bonds’ risks.

Securitization of portfolios separates safe collateral from risky tranches by pooling
assets over longer horizons with less liquid bonds. Individual components of a securi-
tization may be very illiquid, even when they are structured to be very safe and have
𝐴𝐴𝐴 credit ratings.

A bank is also a pool of illiquid loans. Individual bank loans—such as a loan to
a local real estate developer or an individual consumer—may be almost completely
illiquid. Trading bank equity exchanges the pooled risks of the bank’s loan portfolio.
Bank deposits represent a safe investment backed by the collateral value of the bank’s
assets.

To summarize, bond markets perform two related functions: facilitating trading
liquidity by making it easy to exchange risks and facilitating funding liquidity by
moving collateral value among traders and investors. Treasury markets, interest rate
swaps, credit derivatives, and markets for specific corporate bonds separate and ex-
change the various underlying risks. Banks and shadow banks separate the collateral
value from the risk. Shadow banking includes money-market funds, securitizations,
and repo markets.
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2 Liquidity and Microstructure Invariance

Market microstructure invariance implies that both trading liquidity and funding
liquidity are related to the asset-specific illiquidity measure 1/𝐿𝑗𝑡.

1 For asset 𝑗 at
time 𝑡, this measure is a dimensionless quantity defined as

1

𝐿𝑗𝑡

=

(︂
𝐶 · 𝜎2

𝑗𝑡

𝑚2 · 𝑃𝑗𝑡 · 𝑉𝑗𝑡

)︂1/3

. (1)

In this definition, the quantities 𝐿𝑗𝑡, 𝑃𝑗𝑡, 𝑉𝑗𝑡, 𝜎
2
𝑗𝑡, 𝐶, and 𝑚2 all have the following

specific meanings. The quantity 𝜎2
𝑗𝑡 is the variance of daily returns; if the asset’s

daily standard deviation of returns is one percent, then 𝜎2
𝑗𝑡 = 0.012 = 10−4 per day.

The quantity 𝑃𝑗𝑡 · 𝑉𝑗𝑡 measures trading volume in dollars per day; it is obtained by
multiplying the asset price 𝑃𝑗𝑡 (dollars per share, contract, or notional face value)
by units of trading volume (shares, contracts, or notional face value per day). The
subscript 𝑗𝑡 indicates that 𝑃𝑗𝑡, 𝑉𝑗𝑡, and 𝜎2

𝑗𝑡 are market characteristics of a specific
asset 𝑗 at time 𝑡. Markets are illiquid when return volatility 𝜎𝑗𝑡 is high and volume
𝑃𝑗𝑡 · 𝑉𝑗𝑡 is low.

The constant 𝐶 is the dollar expected cost of executing a bet. The constant
𝑚2 is a dimensionless scaling parameter. Market microstructure invariance is the
empirical hypothesis that these two constants are invariant across assets 𝑗 and time
𝑡.2 Therefore, neither 𝐶 nor 𝑚2 has subscripts 𝑗𝑡. These two constants are calibrated
empirically, as discussed below.

The illiquidity measure 1/𝐿𝑗𝑡 is defined in a manner that carefully respects con-
sistency of units of measurement. Multiplying the share price 𝑃𝑗𝑡 (dollars per share)
by trading volume 𝑉𝑗𝑡 (shares per day) removes share units and makes the illiquid-
ity measure immune to splits. The cost of a bet 𝐶 is measured in dollars and the
variance of returns 𝜎2

𝑗𝑡 is measured “per day.” Since 𝑚2 is dimensionless, both the
numerator and denominator in the definition of 1/𝐿𝑗𝑡 have the same units of dollars
per day. Since the units in the numerator cancel with the units in the denominator,
the illiquidity measure 1/𝐿𝑗𝑡 is dimensionless; it can be interpreted as a fraction. For
the purpose of measuring trading liquidity, 1/𝐿𝑗𝑡 can measures trading costs as a
fraction of the value traded. For the purpose of measuring funding liquidity, 1/𝐿𝑗𝑡

may be proportional to the haircut of a repo transaction, measured as a fraction of
the value of the collateral.

Since 1/𝐿𝑗𝑡 is a dimensionless quantity, it does not depend on the units of volume,
currency, and time in terms of which volatility 𝜎𝑗𝑡, price 𝑃𝑗𝑡, and volume 𝑉𝑗𝑡 are

1We place a subscript 𝑗𝑡 on 1/𝐿, thus writing 1/𝐿𝑗𝑡, when we want to emphasize that illiquidity is
a property of a particular asset and changes from asset to asset. We write 1/𝐿 without the subscript
when we do not have a specific asset in mind and the distinction between different assets is not so
important.

2Since 𝐶 is measured in dollars, its dollar value will vary over time. Its value is invariant when
adjusted for inflation and the productivity of finance professionals.
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measured. If units of shares, dollars, and days are changed to units of $100 par value,
Euros, and years, the same dimensionless value of 1/𝐿𝑗𝑡 is obtained.

In equation (1), the exponent 1/3 makes the liquidity measure consistent with
“leverage neutrality,” which captures the same idea as “Modigliani-Miller irrele-
vance.” Consider leveraging up a stock by paying a cash- or riskless-debt-financed
dividend equal to half the value of a share. The stock price should should halve and
the returns standard deviation should double. If illiquidity 1/𝐿𝑗𝑡 measures the cost
of trading as a fraction of the value traded or the size of a haircut as a fraction of the
value of the asset, then 1/𝐿𝑗𝑡 should double because the dollar risk of exchanging a
given number of shares is constant while the dollar value of a share has halved. An
exponent of 1/3 is exactly what is required for 1/𝐿𝑗𝑡 to behave in this manner.

In effect, this leverage neutrality property of the definition of illiquidity 1/𝐿𝑗𝑡 sep-
arates trading liquidity from funding liquidity in a consistent manner. The definition
of 1/𝐿𝑗𝑡 implies that adding or subtracting cash from a package consisting of the risky
asset and the debt used to finance it does not affect the cost of exchanging the under-
lying risk in the marketplace. The same Modigliani-Miller neutrality in the previous
paragraph can be applied to a trader who uses leverage provided by funding liquidity
in the following manner. Consider a trader who trades bonds using 10% haircut (eq-
uity) capital while borrowing the remaining 90% of the bonds’ value in the funding
market. Call this 9-to-1 leverage. The trader can measure liquidity using 1/𝐿𝑗𝑡 based
on volume and volatility of the bond. The trader can also measure liquidity based
on his own use of leverage. Leveraging a position 9-to-1 is equivalent to reducing
the asset price 𝑃𝑗𝑡 by a factor of 10 because each 100 dollars of asset is attached to
90 dollars of debt. Leveraged dollar volume—the amount of equity traders exchange
when buying or selling risky assets—is less than unleveraged volume by a factor of
10. Similarly, leveraged volatility is greater by a factor of 10. The ratio 𝜎2

𝑗𝑡/(𝑃𝑗𝑡 · 𝑉𝑗𝑡)
inside the exponent of 1/3 in equation ((1)) increases by a factor of 1,000. Taking the
cube root changes the factor of 1,000 to a factor of 10, which measures the increase
in leveraged illiquidity in a manner that assumes the dollar cost of exchanging a risk
is not affected by how the underlying asset is financed. A transaction cost of 20 basis
points of the value of the underlying asset becomes a transaction cost of 200 basis
points relative to the trader’s 10% “equity” or haircut in the trader’s position. Again,
the exponent must be exactly 1/3 for this concept of leverage neutrality to hold.

A “bet” (meta-order) represents a decision by an institutional investor to buy or
sell a specific random quantity. Bets are typically broken up into numerous individual
orders and executed over time as numerous trades; therefore the size of a bet may
not be proportional to the size of a trade.

Kyle and Obizhaeva (2016) use a dataset of portfolio transition orders to estimate
both the size distribution of bets and the transactions costs of executing them. The
estimated mean bet size and the estimated transaction costs are approximately con-
sistent with the following specific calibrated values for the invariant constants 𝐶 and
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𝑚2:
𝐶 = $2, 000, 𝑚2 = 1/4. (2)

Here, the dollar value 𝐶 = $2, 000 is interpreted as the unconditional dollar expected
cost of executing a bet of random size, under the identifying assumption that portfolio
transition orders have the same random size distribution as bets. Plugging these
calibrated constants into equation (1) yields

1

𝐿𝑗𝑡

=

(︂
2, 000 · 𝜎2

𝑗𝑡

1/4 · 𝑃𝑗𝑡 · 𝑉𝑗𝑡

)︂1/3

. (3)

Let ̃︀𝑄𝑗𝑡 denote the random number of shares in a bet, with ̃︀𝑄𝑗𝑡 > 0 denoting

buying and ̃︀𝑄𝑗𝑡 < 0 denoting selling. Assume buys and sells are equally likely, so

that 𝐸{ ̃︀𝑄𝑗𝑡} = 0. Let 𝑄𝑗𝑡 = 𝐸{| ̃︀𝑄𝑗𝑡|} denote the average (unsigned) size of a bet (in
shares). The dimensionless quantity 𝑚2 is chosen to scale 1/𝐿𝑗𝑡 so that the equality

𝑃𝑗𝑡 ·𝑄𝑗𝑡 = 𝐶 · 𝐿𝑗𝑡 (4)

holds. This equation has two interesting interpretations. On the one hand, it implies
that the dollar size of a bet 𝑃𝑗𝑡 · 𝑄𝑗𝑡 is proportional to 𝐿𝑗𝑡, with invariant constant
of proportionality 𝐶. On the other hand, 1/𝐿𝑗𝑡 can be interpreted as a transaction
cost as follows. Write the equation in the form 1/𝐿𝑗𝑡 = 𝐶/(𝑃𝑗𝑡 · 𝑄𝑗𝑡). Since the

numerator 𝐶 is the average dollar cost of a bet and the denominator 𝑃𝑗𝑡 · 𝑄𝑗𝑡 is
the average dollar size of a bet, the illiquidity measure 1/𝐿𝑗𝑡 measures the “dollar-
weighted” average transactions cost as a fraction of the dollar value traded. Both
of these interpretations of 1/𝐿𝐽𝑡 represent strong empirical restrictions implied by
invariance.

Kyle and Obizhaeva (2016) find that a hypothetical “benchmark stock” (near the
middle of the S&P 500) with 𝑃𝑗𝑡 = $40 per share, 𝑉𝑗𝑡 = 1 million shares per day
and 𝜎𝑗𝑡 = 2% per day has an average transactions cost of 1/𝐿𝑗𝑡 = 43 basis points.
The definition of 1/𝐿𝑗𝑡 implies that increasing dollar volume by a factor of 8 (while
holding volatility constant) decreases the average transactions cost by a factor of
81/3 = 2 to about 22 basis points. This empirical restriction is supported in the
portfolio transitions data. Furthermore, the values of transactions costs are is similar
in magnitude to the transaction costs estimated by Angel, Harris and Spatt (2011)
and Angel, Harris and Spatt (2015) using a different dataset.

The distribution of portfolio transition order sizes turns out to be log-normal
with log-variance of 2.53.3 In what follows, we augment the invariance assumptions
by assuming that the shape of the distribution of bets in fixed income markets is the
same log-normal as in portfolio transitions, with different means for different assets
depending on their liquidity 𝐿𝑗𝑡.

3Specifically, the distribution of bets inferred from portfolio transition orders for equities resem-
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Let 𝛾𝑗𝑡 denote the number of bets arriving each day. Assume that bet volume and
trading volume are the same; this is equivalent to assuming that the other side of
each bet trade is taken by a non-bet intermediary, like a specialist or market maker.
Since 𝑄𝑗𝑡 measures average bet size and 𝑉𝑗𝑡 measures share volume, the ratio 𝑉𝑗𝑡/𝑄𝑗𝑡

measures the expected number of bets per day, under the assumption that trading
volume and bet volume are the same. Equations (1) and (4) imply that the number
of bets per day can be written in various ways as

𝛾𝑗𝑡 =
𝑉𝑗𝑡

𝑄𝑗𝑡

=
𝜎2
𝑗𝑡 · 𝐿2

𝑗𝑡

𝑚2
=

(︂
𝑃𝑗𝑡 · 𝑉𝑗𝑡 · 𝜎𝑗𝑡

𝑚 · 𝐶

)︂2/3

. (6)

The value of 𝛾𝑗𝑡 measures the speed of the market, the rate at which “business time”
passes. For the benchmark stock, the number of bets is estimated as approximately
85 per day.4

We call the quantity 𝑊𝑗𝑡 = 𝑃𝑗𝑡 · 𝑉𝑗𝑡 · 𝜎𝑗𝑡 in equation (6) “trading activity.” Note
that trading activity 𝑊𝑗𝑡 has non-intuitive units of “dollars per unit of time to the 3/2
power.” In equation (6), dividing by 𝐶 removes the dollar units and taking the 2/3
power allows 𝛾𝑗𝑡 to be measured per unit of time, consistent with the interpretation
that 𝛾𝑗𝑡 measures the rate at which bets arrive.

2.1 Trading Liquidity

The illiquidity measure 1/𝐿𝑗𝑡 is a dimensionless quantity which can be conveniently
used to describe different dimensionless aspects of liquidity. As mentioned above,
the illiquidity measure 1/𝐿𝑗𝑡 is scaled to measure trading liquidity as the “dollar-
weighted” average transactions cost as a fraction of the dollar value traded.

The transactions cost of executing a specific bet depends on the size of the bet.
Let ̃︀𝑍𝑗𝑡 := 𝑃𝑗𝑡 · ̃︀𝑄𝑗𝑡/(𝐶 ·𝐿𝑗𝑡) denote the size of a bet as a multiple of the average dollar

bles a log-normal of the form

ln

(︃
| ̃︀𝑄𝑗𝑡|
𝑉𝑗𝑡

)︃
≈
(︂

𝑃𝑗𝑡 · 𝑉𝑗𝑡 · 𝜎𝑗𝑡

(40)(106)(0.02)

)︂−2/3

· 𝑒−5.71+
√
2.53·̃︀𝑍𝑗𝑡 , ̃︀𝑍𝑗𝑡 ∼ 𝑁(0, 1) (5)

The various quantities in equation ((5)) are scaled so that the median bet in a $40 stock with trading
volume of 1 million shares per day and volatility of 2% per day represents a fraction of average daily
volume equal to 𝑒−5.71 ≈ 0.33% of average daily volume. The equation implies 𝑃𝑗𝑡·𝑄𝑗𝑡 is proportional

to 𝐿𝑗𝑡, and the distribution of ̃︀𝑄𝑗𝑡 is log-normal with log-variance equal to 2.53 for all stocks. The
scaling exponent of −2/3 and the log-variance 2.53 reflect strong empirical restrictions confirmed in
the portfolio transitions data.

4For portfolio transitions involving equities, the constants 𝑚 and 𝐶 imply

𝛾𝑗𝑡 ≈ 85 ·
[︁ 𝑃𝑗𝑡 · 𝑉𝑗𝑡 · 𝜎𝑗𝑡

(40)(106)(0.02)

]︁2/3
. (7)

Here, the quantities are scaled so that a $40 stock with trading volume of 1 million shares per day
and volatility of 2% per day has about 85 bets per day, consistent with Kyle and Obizhaeva (2016).

8



bet size 𝐶 ·𝐿𝑗𝑡. Let 𝐶
$
𝑗𝑡(𝑍) denote the dollar transaction cost of executing a bet that

is 𝑍 times the size of an average bet, and let 𝐶%
𝑗𝑡 (𝑄𝑗𝑡) denote the cost of a bet of 𝑄𝑗𝑡

shares as a fraction of its value. Invariance implies that, for some function 𝑓(𝑍) ≥ 0,
the dollar transaction cost function has the “invariant” form

𝐶$(𝑍) = 𝐶 · |𝑍| · 𝑓(𝑍), with 𝐸{| ̃︀𝑍| · 𝑓( ̃︀𝑍)} = 1, (8)

and the percentage transaction cost function equivalently has the form

𝐶%
𝑗𝑡 (𝑄𝑗𝑡) =

1

𝐿𝑗𝑡

· 𝑓(𝑍) with 𝑍 :=
𝑃𝑗𝑡 ·𝑄𝑗𝑡

𝐶 · 𝐿𝑗𝑡

. (9)

Leveraging a bet up or down does not change 𝑍𝑗𝑡 because 𝑃𝑗𝑡 and 𝐿𝑗𝑡 change propor-
tionally with changes in leverage. The dollar transaction cost function 𝐶$(𝑍) does
not depend at all on the cash value of the collateral involved in the bet; it depends
only on the size of the risk exchanged as a multiple of the risk of an average bet. The
percentage transaction cost function 𝐶%

𝑗𝑡 (𝑄𝑗𝑡) reflects the cash value of the collateral
through the liquidity parameter 𝐿𝑗𝑡.

If the transactions cost is the sum of a bid-ask spread component and a linear
price-impact component, the resulting linear price impact transaction cost model can
be written

𝑓(𝑍) = 𝜅+ 𝜆 · |𝑍|. (10)

The values 𝜅 = 0.15 and 𝜆 = 0.0576, consistent with estimates from portfolio transi-
tions for equities, imply dollar costs given in table 1.5

The data in table 1 illustrate the importance of the price impact of large orders.
The variance of log( ̃︀𝑍) is 2.53, a very large number. This makes the distribution of

unsigned bet size | ̃︀𝑍| have extremely large skewness and gives the symmetric distri-

bution of signed bet size extreme kurtosis (with ̃︀𝑍 > 0 for buys, ̃︀𝑍 < 0 for sells). The
median bet is only 28% as large as the average bet. The average cost of $2,000 per
bet is generated mostly by very high costs for very large bets.

5The function 𝐶%
𝑗𝑡(𝑄) can also be written

𝐶%
𝑗𝑡(
̃︀𝑄𝑗𝑡) = 𝜅 · 𝜎𝑗𝑡 ·

(︂
𝑃𝑗𝑡 · 𝑉𝑗𝑡 · 𝜎𝑗𝑡

𝑚 · 𝐶

)︂−1/3

+ 𝜆 · 𝜎𝑗𝑡 ·
(︂
𝑃𝑗𝑡 · 𝑉𝑗𝑡 · 𝜎𝑗𝑡

𝑚 · 𝐶

)︂1/3

· |
̃︀𝑄𝑗𝑡|
𝑉𝑗𝑡

. (11)

For portfolio transitions, the transaction costs with coefficients calibrated to fit a linear price impact
model can be written

𝐶%
𝑗𝑡(𝑄) =

𝜎𝑗𝑡

0.02

(︁8.21
104

·
[︂

𝑃𝑗𝑡 · 𝑉𝑗𝑡 · 𝜎𝑗𝑡

(40)(106)(0.02)

]︂−1/3

+
2.50

104
·
[︂

𝑃𝑗𝑡 · 𝑉𝑗𝑡 · 𝜎𝑗𝑡

(40)(106)(0.02)

]︂1/3
𝑄

(0.01)𝑉𝑗𝑡

)︁
. (12)

This equation is scaled so that a bet of 1% of average volume in a $40 stock with volume of 1 million
shares per day and volatility of 2% per day has a bid-ask spread cost of 8.21 basis points and a
market impact cost of 2.50 basis points.

9



Table 1: Transaction Costs with Bid-Ask Spread and Linear Price Impact

Standard Deviation Scaled Size Spread Cost Impact Cost Total Cost

of log(| ̃︀𝑍|) | ̃︀𝑍| 𝐶 · 𝜅 · | ̃︀𝑍| 𝐶 · 𝜆 · ̃︀𝑍2 𝐶 · (𝜅 · | ̃︀𝑍|+ 𝜆 · ̃︀𝑍2)
($) ($) ($)

+0 · 𝜂 = median 0.28 85 9 94
+0.7953 · 𝜂 = avg 1.00 300 115 415

+1 · 𝜂 1.38 415 221 636
+2 · 𝜂 6.79 2,039 5,315 7,353
+3 · 𝜂 33.34 10,002 127,957 137,959
+4 · 𝜂 163.59 49,078 3,080,627 3,129,705

This table assumes that scaled bet size | ̃︀𝑍| has a log-normal distribution

with log(| ̃︀𝑍|) ∼ 𝑁(−𝜂2/2, 𝜂2) with 𝜂2 = 2.53. The transaction cost

of executing a bet, 𝐶$( ̃︀𝑍) = 𝐶 · ̃︀𝑍 · 𝑓( ̃︀𝑍), is assumed to be the sum
of a bid-ask spread term and a linear price impact term of the form
𝑓( ̃︀𝑍) = 𝜅+ 𝜆 · | ̃︀𝑍| . The dollar values of the spread and impact terms
are calibrated from estimates of portfolio transition orders for equities
in Kyle and Obizhaeva (2016). The implied values are approximately
𝜅 = 0.15 and 𝜆 = 0.0576.

Urgency and Trading Costs. To further understand transaction costs, it is nec-
essary to understand how transactions costs are affected by shortening the liquidation
horizon. The invariance-implied average transactions cost of 1/𝐿𝑗𝑡 makes the implicit
assumption that the seller liquidates a large position gradually enough to achieve
reasonable or normal transactions costs.

While the theory of market microstructure invariance does not (yet) have a well-
developed approach to modeling fire sales, we can take some first steps towards de-
veloping such a theory here by examining a simplistic example. The transaction cost
for executing a bet is likely to depend on the time period over which it is executed.
The transaction cost function 𝑓(𝑍) above implicitly assumes that the bet is executed
at a “normal” speed designed to optimize the typical trade-off between the urgency
of the bet and the costs associated with increased speed of execution. In addition to
𝑍, consider adding another parameter to the function 𝑓(𝑍) to measure the speed of
liquidation. Let 𝑇𝑗𝑡 denote the horizon of execution of a bet, such as a forced collat-
eral liquidation, in days. Rather than using calendar time, it is more convenient to
measure this time horizon in “natural” units of business time measuring the number
of bets expected to arrive during the execution horizon 𝑇𝑗𝑡. Since 𝛾𝑗𝑡 bets arrive per
day, this horizon is given by 𝐻𝑗𝑡 := 𝛾𝑗𝑡 · 𝑇𝑗𝑡

A generalized formula for the transactions cost function, including a time horizon,
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can be written

𝐶$(𝑍,𝐻) = 𝐶 · 𝑍 · 𝑓(𝑍,𝐻), where 𝑍 =
𝑃𝑗𝑡 ·𝑄𝑗𝑡

𝐶 · 𝐿𝑗𝑡

, 𝐻 = 𝛾𝑗𝑡 · 𝑇𝑗𝑡 =
𝜎2
𝑗𝑡 · 𝐿2

𝑗𝑡

𝑚2
· 𝑇𝑗𝑡.

(13)
Now consider the shape of the function 𝑓(𝑍,𝐻). The function 𝑓(𝑍,𝐻) should

have the properties that transaction costs are greater if the bet size 𝑍 is larger and
the execution horizon 𝐻 is shorter. Since linearity makes things simple, consider a
transactions cost formula in which things are as linear as possible.

The smooth trading model of Kyle, Obizhaeva and Wang (2016) implies an intu-
itive theory of how speed affects transactions costs. We will use a variation on this
theory here. In the smooth trading model, temporary price impact is proportional to
the rate at which sales occur. This implies the functional form

𝑓(𝑍,𝐻) = 𝜅+ 𝜆 · ℎ(𝑍)
𝐻

· |𝑍|, (14)

where ℎ(𝑍) is the natural horizon of execution for an order of size 𝑍. If 𝐻 is chosen
so that 𝐻 = ℎ(𝑍), then equation ((14)) is that same as equation ((10)). Doubling
the speed of asset sales 1/𝐻 doubles the temporary market impact cost. Since mar-
ket impact dominates transaction costs for large transactions, we can think of the
transaction cost 𝑓(𝑍,𝐻) as resulting mostly from market impact costs so that 𝜅 ≈ 0.

Theory does not (so far) tell us the functional form of ℎ(𝑍). If typical bets are
executed at a speed which represents one percent of volume over the horizon, then
ℎ(𝑍) = 100 · 𝑍 for a bet of typical size.

In a smooth trading equilibrium with trading occurring under “normal” (equi-
librium) market conditions, traders with private information choose the degree of
temporary price impact so that over the long run the temporary price impact ap-
proximately becomes permanent price impact as their private information gradually
dissipates into the market. This implies a choice of liquidation horizon𝐻. The smooth
trading model has an equilibrium in which each trader chooses a trading speed such
that his actual inventory converges toward a target inventory at a constant rate.

2.2 Funding Liquidity

Some researchers think of trading liquidity as something different from funding liq-
uidity. We will next show that funding liquidity, like trading liquidity, is related to
the illiquidity measure 1/𝐿𝑗𝑡 and the speed of the market. Thus, funding liquidity
and trading liquidity are two sides of the same coin.

Funding liquidity measures the costs of financing asset positions with debt collat-
eralized by the assets themselves. Funding liquidity has two components, an interest
rate and a haircut (equity or one-minus-loan-to-value-ratio). Funding transactions
are typically structured as repurchase agreements in which the collateral is temporar-
ily sold to lender and bought back at the maturity date of the funding transaction.
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In repo transactions, the lenders of cash want the loan to be safe. Therefore, the
haircut is set to make the probability of default very small, so that the loan is almost
risk-free. As a result, haircuts vary across assets with different risks but funding rates
do not vary as much. The term of the funding transaction is frequently one day.

Returns Volatility and Marking to Market If the liquidity of the collateral
is ignored, a theory of repo haircuts is likely to relate the size of the haircut to the
volatility of returns. For example, if the daily returns volatility of the collateral is
𝜎𝑗𝑡, the collateral is marked to market at time intervals Δ𝑇 and 𝑆 returns standard
deviation of haircut is needed to make the loan safe, then the haircut is given by

Haircut = 𝜎𝑗𝑡 ·Δ𝑇 1/2 · 𝑆. (15)

Operationally, assets may be marked to market and haircuts recalculated at fixed
time intervals of say Δ𝑇 = one day. When Δ𝑇 is held fixed, this leads to a theory of
haircuts based on returns volatility 𝜎𝑗𝑡, not liquidity 1/𝐿𝑗𝑡.

We believe that this theory of haircuts fails to take into account how time interacts
with funding liquidity. When time is taken into account, the funding haircut should
be proportional to 1/𝐿𝑗𝑡 and not proportional to 𝜎𝑗𝑡, especially for illiquid collateral.

Since borrowers of cash have an incentive to conserve haircut capital and lenders
both have an incentive to reduce counter-party credit risk, it is reasonable to con-
jecture that repos will be marked to market and collateral posted as frequently as
is practical. When the collateral consists of very liquid assets, it may be practical
to mark to market by posting collateral on an intraday basis. For example, futures
contracts post collateral as cash; liquid futures contracts may be marked to market
more than once per day in unusually volatile markets.

For illiquid collateral, marking to market on a frequent basis becomes difficult
because the value of the asset is difficult to observe. This is especially true at times
of market stress, when markets may slow down but posting collateral matters most.
As a practical matter, efforts by lenders to collect collateral from cash borrowers
whose collateral is falling in value will likely result in disputes about the valuation
of the collateral. For thinly traded assets, these valuations disputes are likely to be
difficult to resolve, and it will therefore take time for the process of marking to market
and posting collateral to take place in an orderly manner. The difficulty of observing
accurate market prices is likely related to the rate at which bets are taking place in the
market. Implementing collateral agreements which require marking to market thinly
traded assets is likely to become difficult over short periods of time when few bets
take place. If the borrower of cash defaults, the collateral is liquidated. The speed of
the liquidation process is also likely to depend on the speed with which business time
passes. A theory of haircuts based on daily volatility 𝜎𝑗𝑡 implicitly incorporates the
assumption that, in the event of default, the collateral can be liquidated immediately
at current market prices with zero transactions costs. In addition to accounting for
the risk between dates that the collateral is marked to market, the haircut should
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also contemplate forced liquidation by containing a component which compensates the
lender of cash for costs associated with a forced liquidation. We conjecture that that
marking to market, posting collateral, negotiating valuation disputes, and liquidating
defaulting collateral are business activities that take place at a rate proportional to
the rate 𝛾𝑗𝑡 at which bets arrive. When collateral is illiquid, these activities take
place very slowly. When business time is properly taken into account, it turn out the
haircuts should not be proportional to the daily volatility of the collateral 𝜎𝑗𝑡 but
rather should be proportional to the illiquidity of the collateral 1/𝐿𝑗𝑡.

To develop this idea further, consider how to measure volume and volatility in
units of business time. Average volume is one bet per unit of business time. Since
the average size of a bet is 𝐶 · 𝐿𝑗𝑡, we have

Dollar Volume per Bet = 𝐶 · 𝐿𝑗𝑡. (16)

Returns variance per unit of business time is 𝜎2
𝑗𝑡/𝛾𝑗𝑡. As a standard deviation, the

returns standard deviation in one unit of business time can be written

Volatility per Bet =
𝜎𝑗𝑡

𝛾1/2
=

𝑚

𝐿𝑗𝑡

. (17)

These equations show that the constants 𝐶 and 𝑚2 used in the definition of liquidity
can be used to convert 𝐿𝑗𝑡 into measures of volatility and volume per unit of business
time.

This immediately leads to another economic interpretation of the concept of mar-
ket microstructure invariance. The standard deviation of the change in the dollar
mark-to-market value of a bet of random bet of size ̃︀𝑄𝑗𝑡 is given by

𝐸

{︃
𝑃𝑗𝑡 · ̃︀𝑄𝑗𝑡 · 𝜎𝑗𝑡

𝛾
1/2
𝑗𝑡

⃒⃒⃒ ̃︀𝑄𝑗𝑡

}︃
=
(︁
𝐶 · 𝐿𝑗𝑡 · ̃︀𝑍𝑗𝑡

)︁
·
(︂

𝑚

𝐿𝑗𝑡

)︂
∼ 𝑚 · 𝐶 · ̃︀𝑍. (18)

In the above equation, the notation “∼” means “equal in distribution to.” Dropping
the subscript 𝑗𝑡 from ̃︀𝑍𝑗𝑡 at the last step incorporates the extra assumption that

the probability distribution of ̃︀𝑍𝑗𝑡 is invariant across stocks (a log-normal with log-

variance 2.53). Of course, the mean of | ̃︀𝑍𝑗𝑡| is one by definition. Thus, the standard
deviation of the change in dollar mark-to-market value of an “average bet” is 𝑚 ·
𝐶; invariance assumes that this number is constant across all assets. The extra
assumption implies that the shape of the probability distribution of ̃︀𝑍𝑗𝑡 is the same
across stocks also. Kyle and Obizhaeva (2016) develop the concept of invariance
around the assumption that the size of risks transferred by markets are the same
when measured in units of business time.6

6If all returns volatility results from the price impact of bets, then equation (18) requires 𝑚2 :=

𝐸{ ̃︀𝑍2}. Use of the letter 𝑚 reminds us that 𝑚2 is the second “moment” of ̃︀𝑍. This refinement
involves understanding empirical relationships related to the fraction of volume which results from
bets, the fraction of volatility which results from bets, and the level of dealer profits on intermediation
trades. These issues may require re-calibrating the constants 𝑚2 and 𝐶. They take us beyond the
scope of this paper.
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Since 𝑚/𝐿𝑗𝑡 measures the returns standard deviation between the arrival of one
bet and the next, the standard deviation of returns over the period of time borrowers
and lenders mark returns to market, post collateral, and liquidate defaulted collateral
can be measured as 𝑚/𝐿𝑗𝑡 · 𝐻1/2, where 𝐻 measures business time as the expected
number of bets which take place between the time of making a margin call and
finishing liquidation of defaulted collateral. Note that 𝐻 does not have a subscript
𝑗𝑡 because business-time units are the same for all assets.

What matters for funding liquidity is returns volatility per unit of business time,
measured by 1/𝐿𝑗𝑡, not returns volatility per unit of calendar time, measured by
𝜎𝑗𝑡. This analysis leads to the intuition that trading liquidity and funding liquidity
are fundamentally the measured in the same way because both are measured by the
illiquidity measure 1/𝐿𝑗𝑡.

Fire Sales In a situation in which defaulted repos are being liquidated, the cash
lender who is liquidating the collateral may be more interested in being made whole
than in minimizing the transactions costs of liquidation. To reduce the risk of adverse
price fluctuations over the liquidation horizon, the cash lender may have an incentive
to speed up collateral sales even if this increases transactions costs. The result is a
“fire sale.”

The trader’s internal model correctly recognizes that trades have temporary price
impact averaging 1/𝐿𝑗𝑡 for trades of normal size executed at a normal speed (assuming
this covers almost all bets). In principle, the trader could measure his price impact
costs by comparing pre-trade prices with execution prices (implementation shortfall).
An economist studying market efficiency and price impact would discover empirically
that most of the price impact appeared to be permanent. In a fire sale situation, a
trader chooses to sell at a speed much more rapid than normal. An economist would
observe that temporary price impact is reversed after the trade takes place.

The above analysis suggests that natural repo haircuts are the sum of two com-
ponents:

Haircut =
1

𝐿𝑗𝑡

·
(︂
𝑆 ·𝑚 ·𝐻1/2 + 𝜆 · ℎ(𝑍)

𝐻
· |𝑍|

)︂
. (19)

The first component represents the returns standard deviation during the interval
over which prices are marked to market, collateral posted, and collateral liquidated in
default. The second component represents the cost of liquidating defaulted collateral.
This is the haircut model consistent with market microstructure invariance. It implies
that the haircut is proportional to illiquidity 1/𝐿𝑗𝑡; it also implies a direct connection
between trading and funding liquidity implied by the cost of executing a bet.

As a further step, consider the liquidation horizon 𝐻 which minimizes the re-
quired haircut. Optimizing over 𝐻 leads to a solution in which 𝐻 is proportional to
(ℎ(𝑍) · 𝑍)2/3 and therefore the haircut is proportional to (ℎ(𝑍) · 𝑍)1/3 /𝐿𝑗𝑡. Larger
bets require larger haircuts.
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3 Trading and Funding Liquidity in U.S. Treasury

Market

The values 𝐶 = $2, 000 and 𝑚2 = 1/4 are chosen to generate values for 1/𝐿𝑗𝑡 and 𝛾𝑗𝑡
consistent with estimates of bet size and transactions costs for individual stocks based
on equity market portfolio transitions. In this section, we use these parameters to
calculate implied values for illiquidity 1/𝐿𝑈𝑆𝑇 and number of bets 𝛾𝑈𝑆𝑇 for the market
for U.S Treasuries. The purpose is to examine whether microstructure invariance
generates scaling laws which apply to securities other than equities and to securities
with dramatically different liquidity characteristics.

3.1 Measuring Size and Liquidity of Fixed Income Markets

The size or liquidity of a market is properly measured by the sizes of the risks it
exchanges. To focus discussion, consider a simplistic one-factor Treasury bond market
in which the only risk of concern is a parallel movement in the yield curve. The return
volatility of a bond is the product of the volatility of yields and the bond’s duration.
Thus, if the volatility of yields is 𝜎𝑌 = 5 basis points per day per day, the return
volatility of a bond with a 10-year duration is 𝜎10 = 50 basis points per day, the
volatility of a bond with a 5-year duration is 𝜎5 = 25 basis points per day, and the
volatility of a bond with a 2-year duration is 𝜎2 = 10 basis points per day.

To simplify discussion, suppose the Treasury market consists of volume in two-
year, five-year, and ten-year bonds. Suppose the bonds are are perfect substitutes
from the perspective of interest rate risk with durations of approximately two, five,
and ten years respectively. Suppose that arbitragers make sure that the bonds are
constantly priced with the correct arbitrage relationship.

How should the aggregate size of the market be measured? Clearly, since dura-
tions differ by factors of 2 and 5, it is intuitively appropriate to begin with a weighted
average of dollar volume where the weights differ by factors proportional to the dura-
tions of the bonds. Since returns volatilities are proportional to durations, volatilities
provide a good weighting scheme. Let 𝑃10 · 𝑉10, 𝑃5 · 𝑉5, and 𝑃2 · 𝑉2 denote dollar
volume per day in on-the-run Treasury notes with maturities of 10, 5, and 2 years,
respectively. Here, 𝑃10 measures the dollar price of one dollar of face value and 𝑉10

measures the total face value or notional value in dollars per day. 7 A reasonable
aggregate measure of the sizes of the risks transferred by the entire market, consistent
with our previous definition of trading activity, is given by

Treasury Trading Activity = 𝑃10 · 𝑉10 · 𝜎10 + 𝑃5 · 𝑉5 · 𝜎2 + 𝑃2 · 𝑉2 · 𝜎2 (20)

7For stocks, 𝑃𝑗𝑡 measures the price in dollars per share and 𝑉𝑗𝑡 measures the number of shares
traded per day. For bonds, one “share” is one dollar of face value or one dollar of notional value.
Either way, the product 𝑃𝑗𝑡 · 𝑉𝑗𝑡 is measured in dollars per day.
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Since, for example, 𝜎10/𝜎2 = 10/2 = 5, this measure of aggregate risk transfer has
the desirable property that it is unchanged if $100 billion of two-year note volume is
converted into economically equivalent $20 billion of ten-year note volume.

Assume that bond markets price the exchange of risk consistently in the sense
that the dollar market impact cost of exchanging the same economic risk is the same
dollar amount. Suppose that buying $600 million of ten-year notes has a market
impact cost 5/256 of one percent of the par value. Then buying $3 billion of two-year
notes will have a price impact cost of 1/256 of one percent of the par value. In both
cases, the dollar price impact cost is $500 · 106 · 0.01 · 5/64 = $390, 625.

Measured as a fraction of the market value of the two bonds, the market impact
cost of buying or selling the ten-year note is five times greater than the two-year
note. The fractional cost of 5/256 of one percent of par for the ten year note is
5/256 ·1% = 0.0195% = 1.95 basis points. The fractional cost of 1/265 of one percent
of par for the two-year note is 1/256 · 1% = 0.0039% = 0.39 basis points.

Investors participate in fixed income markets for two distinct motives. On the one
hand, some investors trade fixed income securities to exchange risks associated with
changes in interest rates or credit spreads. Such investors are interested in minimizing
the market impact costs of exchanging a risk of a given size. On the other hand, many
investors hold fixed income assets for their liquidity. Such investors prefer to hold
very safe assets for short time periods. They therefore have an incentive to choose
assets whose trading costs are low as a fraction of the value of the asset.

Volume. Applying microstructure invariance to the entire U.S. Treasury bond mar-
ket at once requires approximations for volume and returns volatility.

Trading volume is split between the futures market and the cash market and also
split across different maturities, with on-the-run maturities of 2, 5, and 10 years
dominating trading volume. High frequency traders keep the cash and futures mar-
ket tightly arbitraged so that the entire market functions as one integrated market.
According to charts in the Joint Staff Report (2015), summarized in our table 2,
daily dollar volume in the cash and futures markets for 10-year, 5-year, and 2-year
maturities combined sums to approximately $232 billion in the years leading up to
the flash rally. To convert the daily volume numbers ten-year-equivalent duration-
weighted amounts, we weight five-year volume by 0.50 and weight two-year volume
by 0.20. These simplistic approximations result in ten-year-equivalent volume of ap-
proximately $168 billion.

Volatility. Charts in the Joint Staff Report (2015) imply a median daily absolute
yield change of about 5 basis points and a median daily high-low range of about 8
basis points. This implies a median daily standard deviation of returns of 5 or 6
basis points. To convert basis points into approximate percentage returns, multiply a
duration ten years by 5 basis points to obtain an approximate daily standard deviation
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Table 2: Daily Treasury Bond Trading Volume

Cash or Maturity Daily Volume Weight Weighted Volume
Futures (Years) ($ billion) ($ billion)
Futures 10 80 1.00 80
Futures 5 40 0.50 20
Futures 2 16 0.20 8
Cash 10 40 1.00 40
Cash 5 40 0.50 20
Cash 2 20 0.20 4
Sum 232 168

of 50 basis points per day, implying 𝜎𝑈𝑆𝑇 = 0.0050 = 50 basis points or 32/64 of one
percent of par.

Liquidity and Bet Size. Now plug 𝑃𝑈𝑆𝑇 ·𝑉𝑈𝑆𝑇 = $168 billion and 𝜎𝑈𝑆𝑇 = 0.0050
into equations ((1)) to obtain 𝐿𝑈𝑆𝑇 = 9435.388 ≈ 104, or

1

𝐿𝑈𝑆𝑇

≈ 10−4 = 1 basis point. (21)

The “magic number” 1/𝐿𝑈𝑆𝑇 ≈ 10−4 generates many implied predictions about the
Treasury bond market.

The average size of a bet, expressed as ten-year equivalents, is predicted to be
𝐶 · 𝐿𝑈𝑆𝑇 ≈ $2, 000 · 104 = $20 million. The value weighted average transaction cost
is 1/𝐿𝑈𝑆𝑇 ≈ 10−4 = 1 basis point.

Assume that the shape of the distribution of Treasury bet sizes is the same as
the shape of the distribution of portfolio transitions. The log-normal distribution of
unscaled bet size has a log-variance of 2.53. This makes the distribution of bet size
very skewed. The vast majority of bets are smaller than average and have smaller
transactions costs than the value-weighted average. The implied sizes, transactions
costs, and probabilities of bets of different sizes are presented in table 3.

According to table 3, the median bet has a size of $6 million and the average bet
a size of $20 million. It takes a bet of $8.6 billion to move prices 25 basis points if
the bet is executed at a “normal” speed. The implied transaction cost of 0.17 basis
point for the median bet consists mostly of bid-ask spread costs.

This extrapolation from data for portfolio transitions in stocks assumes that in-
stitutional details of the Treasury market do not affect scaled transaction costs. One
relevant institutional detail may be tick size. The most liquid venue for trading 10-
year Treasury risk is probably the futures market for 10-year Treasury notes. The
tick size in this market is 1/64 of one percent of par. Thus, one tick represents
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Table 3: Implied Probability Distribution of U.S. Treasury 10-Year Bet Sizes

Standard Deviation Scaled Size $ Million Size Probability Larger T-Cost (bp)
+0 · 𝜂 = median 0.28 6 0.50 0.17

+0.7953 · 𝜂 = average 1.00 20 0.21 0.21
+1 · 𝜂 1.38 28 0.16 0.23
+2 · 𝜂 6.79 136 0.023 0.54
+3 · 𝜂 33.34 667 0.0013 2.07
+4 · 𝜂 163.59 3271 0.000032 9.57

+4.6113 · 𝜂 432.56 8651 0.0000020 25.04

This table measures bets in Treasuries in units of standard deviation of
log( ̃︀𝑍) in column 1, in scaled size 𝑍 in column 2, and dollar size in
column 3. The scaled sizes and probability in column 4 is based on a
log-normal distribution with log-variance 𝜂2 = 2.53. The transaction
cost in column 5 assumes the same model of linear price impact as
table 1.

1.5625 basis point of return, and one-half tick represents 0.78125 basis points of re-
turn. The implied transaction cost of 0.17 basis points is approximately 1/5 the size
of a half-tick. Thus, the implied transaction cost for small bets implies that traders
use smart-enough order execution systems so that trades are timed to save approxi-
mately 80 percent of the cost that would be incurred from hitting bids or lifting offers
randomly. Since the tick size in both the cash and futures market is large (relative
to 1/𝐿𝑈𝑆𝑇 ), the bid-ask spread is typically one tick, and there are large quantities
available at both the bid and offer.

Now consider a rather large “two-standard-deviation” bet of size log( ̃︀𝑍) = 2 · 𝜂.
According to table 3, such a bet is 6.79 times larger than an average bet and has a
dollar size of $136 million. The implied execution cost is 0.54 basis points, less than
one half-tick of 0.78 basis points.

Tables in the Joint Staff Report (2015) suggest that when trading returned to
somewhat normal patterns in the afternoon after the flash rally of October 15, 2014,
three-tick-level market depth in the futures market was about $1 billion and three-
level market depth in the cash market was about $400 million. Dividing by three ticks
and dividing again by two to convert to half ticks implies one-half-tick depth of about
$200 million. This is consistent with the interpretation that simultaneously hitting
bids or offers in the cash and futures market may be a reasonable trading strategy
for executing relatively large bets. It takes only a modest amount of timing ability to
reduce costs from 0.78 basis points to 0.54 basis points. Indeed, while the large tick
size may increase the cost of small orders, it may decrease the cost of larger orders.
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It will require further study to verify whether the liquidity estimates implied by
invariance are reasonable. These simple calculations suggest that they are.

Number of Bets. The number of bets per day is given by

𝛾𝑈𝑆𝑇 =
𝑃𝑈𝑆𝑇 · 𝑉𝑈𝑆𝑇

𝐶 · 𝐿𝑈𝑆𝑇

≈ 8, 900 bets per day. (22)

This is approximately 100 times greater than the 85 bets per day for a typical stock.
Interesting market properties may be inferred from its speed. Multiplying the

number of bets per day by the cost of a bet 𝐶 may generate a good approximation
to the quantity of real resources devoted to a particular market.

Large bets are typically not executed immediately. Instead, they are broken into
small pieces and executed gradually over time. It is likely that the time scale of
execution of bets is proportional to the rate at which bets arrive. If a large bet
of $136 million is executed as a fraction of 1% of bet volume over its execution
horizon, then it will be executed over a horizon during which 679 bets arrive. For
a typical stock with 85 bets per day, this horizon is approximately 8 days. For the
U.S. Treasury bond market, the horizon is approximately 100 time shorter and equal
to approximately 1/12 of a day, a time frame of less than one hour of active volume.
While hitting bids and lifting offers may be a reasonable way to execute a bet of
$135 million, timing over approximately one hour may reduce transaction costs for a
passively executed bet.

It is reasonable to conjecture that market resiliency, defined as the speed or half-
life with which the market recovers from a the price impact of an informationless
bet, is proportional to the rate at which bets arrive. Suppose that it take approxi-
mately a year for the price of a typical stock to recover from the price impact of an
informationless bet. Since the U.S. Treasury bond market operates about 100 times
faster than the market for the typical stock, it may take only two or three days for
the U.S. Treasury bond market to recover from the price impact of an informationless
bet executed in a slow and deliberate manner to avoid “transitory” impact associated
with execution of the bet itself.

The Flash Crash and the Flash Rally The “flash rally” of October 15, 2014,
focussed attention on the functioning of the U.S. Treasury bond market from the
perspective of market microstructure. During the “flash rally” of October 15, 2014,
the entire Treasury market was placed under a great deal of stress for about 12
minutes.

In the beginning of the day, bond prices exhibited significant volatility unprece-
dented in the recent history of the Treasury market. Over the 25 minutes after the
U.S. retail sales report for the month of September at 8:30 a.m. ET, prices started
to drift upward and the 10-year yield declined by about 11 basis points. During
the 12-minute time period 9:33–9:45 a.m., yields dropped sharply by about 16 basis
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points and then rebounded. Taking into account the duration of the 10-year U.S.
Treasuries, this change in yields corresponded to the 120-basis-point decline and re-
bound in prices compressed into a 12-minute time period. The Joint Staff Report
(2015) says there were no obvious explanations for this event.

Market microstructure invariance can be used to calibrate may have happened
during the Treasury market flash rally of October 15, 2014. The observed price
patterns are consistent with the execution of a large order over a short period of
time. Our approach is to use the stock market “flash crash” of May 6, 2010, as as a
“model” flash event. The scaling laws associated with microstructure invariance can
then be used to extrapolate from the U.S. stock futures markets to the U.S. fixed
income market.

During the flash crash of May 6, 2010, a single large trader sold 75,000 contracts
(over $4 billion) of S&P E-mini future over a period of 20 minutes, using an algorithm
which targeted participating in 9% of trading volume over the period of execution.
During the 20-minute period, prices collapsed by about 5%, then recovered. Volume
was many times higher than before or after this time interval. As prices collapsed,
arbitragers bought futures contracts and sold ETFs and individual stocks. During the
previous twelve months, individual traders sold equal or larger single-day quantities
only twice. On one of these occasions, the same large traders sold 75,000 contracts
over a period of five hours without creating a major price disruption.

The overall dollar volume of the entire U.S. stock market is about $300 billion
per day and volatility is about one percent per day.8 Using equation (5), it can be
shown that 75,000 contracts is a 4.30-standard deviation event in the entire U.S.
stock market consisting of both markets for individual U.S. stocks and the U.S. stock
futures. Calculations imply that illiquidity for the entire stock market is given by
1/𝐿𝑆𝑃 ≈ 0.00014 = 1.4 basis points. The average bet size is 𝑃𝑆𝑃 · 𝑄𝑆𝑃 ≈ $14.4
million. The gigantic 4.3 · 𝜂 bet is about 𝑍 = 300 times larger than the average bet.
We assume that this bet should normally be executed over a period of about five
hours, similar to the execution of similar large bets. If so, its implied price impact
would have been about 25 basis points. Since the bet was executed over 20 minutes
and not 5 hours, the execution can be assumed to be about 15 times faster than
normal. Under the assumption that this amplies temporary price impact by a factor
of 15, the temporary price impact is implied to be 360 basis points. The actual decline
was about 500 basis points.

Now consider what an equivalent event in the Treasury market would look like.
Using (7), it can be shown that there are about 20,000 bets executed per day in the
U.S. stock market. The U.S. Treasury market runs more than twice slower than the
U.S. stock market, since there are only about 8,900 bets executed per day. Plugging
the dollar daily volume of about $168 billion per day and volatility of 50 basis points
per day for the U.S. Treasury market into equation (5) implies that an equivalent
4.30-standard deviation order in the Treasury market, with 𝑍 ≈ 300, would be about

8Similar calculations are done by Kyle and Obizhaeva (2013).
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$5.7 billion. If executed at normal speed, the natural price impact would have been
about 18.5 basis points. Taking into account the difference in speed between two
markets, it would take about 12 hours (perhaps stretched over two days) to executed
this order if it were executed at a natural pace. If executed 15 times faster than
normal, we would have a “Treasury bond flash crash” in which a $5.6 billion bet is
executed over 48 minutes with a temporary price impact of about 277 basis points.

Of course, the actual “flash rally” involved a price spike of about 120 basis points,
not 277 basis points. Furthermore, the most severe fluctuations occurred over a period
of 12 minutes, not 48 minutes. Assuming that the flash rally resulted from a large
buy bet executed at a much faster pace than normal, the amount bought is likely
much less than $5.7 billion.

To estimate how much smaller such a bet may have been, we need to make as-
sumptions about the natural time of execution of large bets. For example, suppose
that the natural execution speed ℎ(𝑍) is approximately proportional to the size of
the bet 𝑍. Under this assumption, it can be shown that a $2 billion order, executed
at 20 times the normal speed, would be executed over 12 minutes and drive price up
by about 130 basis points. In fact, figure 3.4 (p.61) shows asset managers, broker-
dealers, and proprietary trading firms (high frequency traders) buying about $1.5
billion from hedge funds during this 12-minute period. It might be considered un-
usual that entities usually considered market makers—broker-dealers and proprietary
trading firms—were trading in the same direction as asset managers who usually de-
mand liquidity. It is possible that broker-dealers and proprietary trading firms chose
to liquidate positions at the same time asset managers where buying, and this created
the appearance of a $1.5 billion bet being executed in 12 minutes. If so, the 12-minute
flash rally may have been a delayed reaction to buying by asset managers earlier in
the day.

The same graph shows asset managers buying about $3.0 billion during the 30-
minute period between 9:15 a.m. and 9:45 a.m. Similar invariance-based calculations
show that purchasing $3 billion over 30 minutes would have temporary price impact
of 116 basis points. These calculations suggest that the 12-minute flash rally may
have been a delayed reaction to events which unfolded over 30 minutes.

Both the flash crash and the flash rally suggest probably resulted from efforts by
traders to move large positions many times faster than such positions would normally
be moved, as a result of which transitory price impact temporarily disrupted markets.

Funding Liquidity in the Treasury Market. Because of its great liquidity, fund-
ing costs for U.S. Treasury collateral are very low relative to other assets. Our analysis
above suggested that funding liquidity is proportional to 1/𝐿, which equals approxi-
mately 1 basis point for 10-year Treasuries. Although our main point about funding
liquidity is that illiquidity 1/𝐿 is more important than daily returns volatility 𝜎 in
setting repo haircuts, borrowing against Treasury collateral may be an exception to
this principle. Unless positions are tens of billions of dollars, minimizing haircuts for
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Treasury collateral would probably result in marking to market many times per day
and liquidating default collateral over a period of hours or minutes, not days. As a
practical matter, it is probably convenient to mark to market, post collateral, and
liquidate collateral based on institutionally convenient decision intervals of exactly
one day.

The standard deviation of returns over one day is about 50 basis points. A 4-
standard-deviation haircut of 2% is therefore likely to be reasonable for all but the
largest collateral sizes. Suppose, for example, that the collateral for an overnight repo
is $500 million of 10-year Treasury securities. According to table 3, the transaction
cost of liquidating the position is only about 2 basis points. Since the liquidation can
take place over a time horizon of minutes, the liquidation costs and risks of liquidation
are small relation to the 200 basis point haircut.

Liquidation costs and liquidation horizons become relevant when the collateral
size is large. Consider the last line of table 3, which considers a bet large enough
to move prices temporarily by 25 basis points. The bet size required to do so is 433
times large than the average bet, representing a collateral position of approximately
$8.6 billion. Given about 8,900 bets per day, liquidating such collateral in one day
would require participating in around 4.87% of average daily volume for an entire day.
A lower participation rate might result in lower liquidation costs, but spreading the
liquidation over several days would increase the probability that underlying market
movements make the haircut inadequate.

4 Trading and Funding Liquidity in Corporate Bond

Market

4.1 Corporate Bond Markets

Corporate bond markets are much less liquid than U.S. Treasury markets and operate
at a much slower speed. To get a sense of the difference, make the back-of-the-envelope
assumption that institutional bet volume in a typical bond is 𝑃𝐶𝐵 · 𝑉𝐶𝐵 = $1 million
per day and the idiosyncratic standard deviation of daily returns is 𝜎𝐶𝐵 = 50 basis
points. This standard deviation includes firm-specific and issue-specific risks but is
meant to ignore interest rate risk. The interest rate, while significant, can be hedged
using government bonds.

Using the invariance assumptions 𝐶 = $2, 000 and 𝑚2 = 0.25, we calculate 𝐿 ≈
171. This implies that average transactions costs are given by

1

𝐿𝐶𝐵

≈ 0.0058 = 58 ≈ 55 basis points. (23)

These assumptions imply an average transaction cost of 1/𝐿𝐶𝐵 ≈ 55 basis points and
bet size of 𝐶 ·𝐿𝐶𝐵 = $342, 000, which implies about 𝑃𝐶𝐵 ·𝑉𝐶𝐵/(𝐶 ·𝐿𝐶𝐵) ≈ 3 bets per
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day. A median bet of about $100,000 has an implied cost of about 10 basis points, a
trade of $1 million has an implied cost of about 20 basis points, and a trade of $10
million has an implied cost of about 100 basis points.

The results of this back-of-the envelope calculation are meant to be approximately
consistent with the detailed study of corporate bond transactions costs by Harris
(2015), who reports about 2.5 trades per day and an average effective half-spread of
50.7 basis points on trades of size greater than $1 million. While our implied costs for
large trades are similar or perhaps slightly smaller in magnitude, our implied costs of
10 basis points for $100,000 trades are much smaller than the 85 basis point cost for
retail trades (less than $100,000) reported by Harris (2015). This is consistent with
the interpretation that the antiquated dealer structure of the corporate bond market
has the effect of increasing costs for small customers by a factor of five or ten.

Our measure of liquidity 𝐿𝑈𝑆𝑇 ≈ 1 basis point is about 55 times higher than the
liquidity measure for a single issue of a corporate bond 𝐿𝐶𝐵 ≈ 55 basis points. Thus,
the average implied trading cost is 55 times higher in the corporate bond market.
Our assumption that Treasury bonds and corporate bonds (idiosyncratic risk) have
the same volatility 𝜎𝑈𝑆𝑇 = 𝜎𝐶𝐵 = 50 basis points per day implies that bets in the
Treasury market are on average 55 times larger than bets in the corporate bond
market. The speed of the Treasury market is faster by a factor of 55-squared, or
approximately 3,000 (approximately consistent with a comparison of 3 bets per day
for a corporate bond with 8,900 bets per day for 10-year Treasuries).

Compare an equally-weighted portfolio of 55 different corporate bonds with a
portfolio of 10-year Treasuries of the same dollar size. Suppose that the Treasury
portfolio is so gigantic that it would take one full day to liquidate. Then a diversified
portfolio of corporate bonds of the same size would take 3,000 days to liquidate, and
the total liquidation cost would be 55 times greater than than Treasury portfolio; as
a practical matter, the gigantic portfolio of corporate bonds would probably be held
to maturity since 3,000 trading days is more than ten years.

Funding Liquidity. Measures of funding liquidity should take account of time
when the collateral is illiquid. Suppose, for example, that the collateral is the hy-
pothetical portfolio of 55 corporate bonds mentioned above. The transaction costs
associated with liquidation are likely to be significant, and the haircut level in the
example above should be modified to take this into account. The transactions cost
associated with liquidation is proportional to 1/𝐿𝐶𝐵, some multiple of about 55 basis
points. Furthermore, the horizon over which the collateral is liquidated is likely to
be weeks or months, depending on the size of the positions. During these weeks and
months, the value of the collateral may decline further.

Let us apply this to the portfolio of 55 corporate bonds. The standard deviation
of returns of 50 basis points per day on each of the 55 bonds reflects the credit risk
only, not the interest rate risk on the portfolio. There is an implicit assumption that
the interest rate risk has been hedged. In the context of a repo transaction, the
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owner of the corporate bond portfolio may have funded the transaction by selling
short an equal quantity of Treasury bonds to hedge the interest rate risk. Thus,
if the the repo transaction becomes distressed and must be liquidated, the lender
is likely to the sell the corporate portfolio and buy back the Treasuries. Since the
Treasury portfolio was large, its assumed transaction cost of liquidation was about 2
times as large as the average transactions cost of 1/𝐿𝑈𝑆𝑇 = 1 basis point. Invariance
implies that the transaction cost of liquidating each of the 55 bonds is about twice the
average transaction cost of 55 basis points, or about 110 basis points. Furthermore,
the liquidation horizon is likely to be very long. Invariance implies that the sales may
take place over a period of several weeks, say 25 business days. This implies that
the standard deviation of returns for each bond over the liquidation horizon is about
𝜎𝐶𝐵 · 251/2 = 0.0250 = 250 basis points. With a 3-standard-deviation cushion, the
repo lender needs an extra haircut of 110 + 3 · 250 = 860 basis points to make the
repo a safe lending proposition. Compared with the case of a Treasury portfolio, the
860 basis points of haircut needed to cover liquidation risk is much larger than the
150 basis point haircut needed to cover market movements (under the assumption
that the returns on the corporate bonds will be perfectly correlated in a liquidation
situation).

Although the stated maturity of the assumed overnight repo is one day, the effec-
tive maturity is likely to be much longer for illiquid collateral when stress situations
are contemplated when the repo is entered into.

Now let us apply this fire-sale intuition to the problem of liquidating a large
corporate bond portfolio. If the corporate bond portfolio is sold at normal speed
over 25 days, the execution cost is 110 basis points and the standard deviation of
returns over the entire horizon is 250 basis points. Now suppose that the cash lender
speeds up liquidation of the collateral by a factor of 4. Then temporary price impact
increases by a factor of 4, magnifying the cost to approximately 4 · 110 = 440 basis
points. The standard deviation of returns over the investment horizon decreases from
250 basis points to 250 · 41/2 = 125 basis points. If the lender must return extra
haircut collateral to the borrower after a successful liquidation, it is easy to see why a
lender with and 860 basis point haircut will speed up liquidation. With a normal rate
of liquidation, as assumed above, the lender suffers losses proportional to the amount
by which a random variable with volatility of 250 basis points exceeds three standard
deviations. With the speeded up liquidation, the lender suffers losses proportional to
the amount by which a random variable with volatility of 125 basis points exceeds
(860−440)/125 = 3.36 standard deviations. The lender is better off both because the
number of standard deviations of coverage is greater (3.36 versus 3.00) and because
the standard deviation itself is smaller (125 basis points versus 250 basis points). As
the repo becomes more poorly collateralized, these incentives magnify.

In this fire sale situation, we are likely to observe a transitory price impact of
approximately 440 basis points, followed by a reversal of approximately the same
amount. This fire sale discount and reversal are likely to unfold and reverse over a
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period of time equal to 1/4 the normal horizon of 25 days, or approximately 6 days.
Of course, the borrower benefits from a slower rate of selling because the value of

the implicit call option increases. The borrower benefits not only from the increased
volatility associated with slower execution but also from the more favorable striking
price associated with lower execution costs passed along to him in the event the seller
is made whole.

Given the divergence of interests between the buyer and the seller when a repo
defaults, the borrower has an incentive to keep the haircut on the repo well-funded.
When the value of the collateral falls, the asset owner can keep the repo well-funded
by either by adding more collateral to restore the haircut based on marking to market
or by selling off a portion of the asset so that the value of the existing haircut as a
fraction of the value of the remaining position increases. De-leveraging by selling
off a portion of the collateral may also result in fire-sale prices if the de-leveraging
transactions are done at a faster speed than the normal speed for such assets. When
a distressed borrower owns different collateral with different degrees of liquidity, this
logic suggests that the asset owner will liquidate collateral with faster markets at a
faster speed. Invariance implies that faster markets are not exactly the same thing
as more liquid markets when measured by 𝐿. Recall from the discussion above that
the cost of liquidating a typical portfolio at a typical speed is measured by 1/𝐿 ∼
(𝜎2/(𝑃 · 𝑉 ))1/3 while the horizon of liquidation for a typical portfolio at a typical
speed is proportional—not by 1/𝐿—but rather to 1/(𝜎2 · 𝐿2) ∼ (𝑃 · 𝑉 · 𝜎)2/3. Speed
and liquidity are both monotonically increasing trading volume 𝑃 · 𝑉 . Thus, given
two assets with the same volatility 𝜎, a distressed seller will likely liquidate the assets
with higher liquidity 1/𝐿 first or at a faster pace. If two assets have the same trading
volume 𝑃 · 𝑉 but different volatilities 𝜎, a distressed seller is likely to liquidate the
higher volatility assets first or at a faster pace.

For example, in the 10-year Treasury market, where we estimate 8,900 bets take
place per day, observing accurate market prices is likely to be easy because there
are numerous arms-length prices and the path of prices is reasonably continuous. In
an illiquid asset with 3 bets per day, it is possible that the buyers and the sellers
might be the borrowers or lenders of the repo collateral, which implies that the prices
may not be arms length. Indeed, the borrower of cash my be adding to his position
to prop up prices, as occurred during the JPMorgan episode involving the London
Whale. Meanwhile, the lender of cash—anticipating taking possible ownership of the
collateral if the borrower defaults or making purchases if the borrower exits with a
fire sale—may be selling the collateral in anticipation of reacquiring it later. The
borrower will, of course, call this front-running and complain.

These perverse incentives explain why an orderly approach to handling defaulting
repo transactions is for the cash lender to take possession of the collateral by purchas-
ing the collateral from the borrower in exchange for relieving the borrower of further
obligations to repay the transaction. Such orderly exchanges will most likely when
the defaulting borrower has little other net worth, as might be the case of a distressed
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hedge fund. Of course, such exchanges work best when the mark-to-market haircut
value is enough to cover expected liquidation costs. If so, then the lender can take
over the collateral and either liquidate it gradually or hold it to maturity.

This thinking is consistent to what happened to Long Term Capital Management
(LTCM) in 1998 and also to what happened to the failing BSAM hedge funds in
summer 2007. In the case of LTCM, the creditors took over the vast majority of
ownership in the underlying positions in fall 1998, held the positions for a long time,
and did not receive a cash bailout from the government. In the case of the BSAM
hedge funds, Bear Stearns bailed out the hedge funds bearing its initials to protect
its reputation even though the original repo counterparties were banks different from
Bear Stearns. Over the following months, the market lost confidence in Bear Stearns,
Bear Stearns lost its ability to fund its positions in the repo market, JPMorgan
acquired Bear Stearns in a distressed sale in March 2008, and the U.S. government
participated in a controversial bailout by using taxpayer dollars to buy off $30 billion
of assets JPMorgan refused to accept at the market prices Bear Stearns had assigned
to them. By taking over the $30 billion in assets and not liquidating them in a fire
sale, the Fed avoided adding immediate price pressure to already distressed assets
and perhaps postponed the collapse of the financial system until the fall of 2008.

5 Short-Selling, Bilateral- and Tri-Party Repos,

Derivatives

Copeland, Martin and Walker (2010) provide a detailed analysis of the tri-party repo
market. Here we discuss some related issues.

There are direct connections between the trading and funding markets. Traders
placing speculative long bets use the repo market to borrow cash. Short sellers placing
speculative short bets use the bilateral repo market to borrow securities to be sold
short. There is an important asymmetry between the markets for borrowing cash and
borrowing securities.

In the market for borrowing cash, the lenders are interested in being protected by
an adequate haircut. In addition, some lenders may be particularly interested in their
ability to unwind the repo transaction and be repaid in a timely manner. Lenders
interested in being able to unwind their loan quickly are likely to demand liquid
Treasury securities as collateral. As a result, the repo rate for Treasury securities
is likely to be lower than the repo rate for less liquid securities. Indeed, if forced
liquidation horizons are something like 20–25 business days for illiquid non-Treasury
collateral, the rate on repos with illiquid collateral is likely to be similar to the rate
on 30-day commercial paper of similar credit-worthiness. Commercial paper, while
often safe, is not liquid and in most cases held to maturity.

To attract money-market investors seeking high interest rates, money market
funds do have an incentive to accept less liquid collateral in exchange for a higher

26



interest rate. When collateral is illiquid, valuing the collateral is difficult. Large and
important market participants, such as money market funds, may not have the so-
phistication to value illiquid collateral. The tri-party repo market structure directly
addresses this issue by placing a third party, a custody bank, between the borrower
and lender of cash. The third party does its job well when it keeps collateral safe
and values collateral accurately for lenders of cash. During the financial crisis, the
tri-party repo market ceased to function effectively. There was a run on the market.
To some extent, this run resulted from investors shifting funds from money market
funds holding safe but less liquid assets to money market funds investing in gov-
ernment securities. To some extent, this run also resulted from money market funds
demanding higher haircuts than borrowers were willing to pay. Copeland, Martin and
Walker (2010) suggest the money market funds took account of both the unsecured
creditworthiness of the borrower and the haircut. When the creditworthiness of bor-
rowers deteriorated (due to ratings downgrades), the haircuts did not adjust due to
structural rigidities in the market; as a result, the lenders engaged in a shadow-bank
run. The analysis in this paper suggests that the higher haircuts should have resulted
from a slowing down of business time related to increase volatility and reduced dollar
volume “when the music stopped” and the financial crisis began.

An additional perspective on the bilateral and tri-party repo markets is obtained
by examining the market from the perspective of short sellers who want to borrow
specific collateral so that they can sell it short. For liquid markets like Treasuries, the
market for negotiating repo transactions is itself likely to be liquid. Under normal
circumstances, a short-seller should be able to locate numerous lenders of collateral
willing to engage in a bilateral repo at a rate reflecting a small rental-rate premium for
specific collateral. Under abnormal conditions, the repo market for specific Treasury
securities may reflect a high rental rate or “specialness” due to owners of collateral
being unwilling to lend it due for strategic reasons.

For illiquid securities, such as specific corporate bonds or specific tranches of secu-
ritizations, the number of investors holding institutional-size positions is likely to be
small and the bilateral repo market is likely to be illiquid. Owners of illiquid collateral
may also have a strategic interest in keeping the market price of the collateral high.
For example, the owners may face capital requirements based on marking the value
of fixed income investments to market. A higher market price makes it look like a
trader with a long position is making larger trading profits, and it conserves haircut
capital. For these strategic reasons, the owner may prefer not to lend the securities
to a borrower of securities who might sell the securities short. Instead, the owner has
an incentive to finance the securities with a tri-party repo in which the third party
promises to keep the collateral “off the street” in custody account, where short sellers
cannot get their hands on it. Thus, tri-party repos are a funding mechanism which
can be used to prop up the value of securities by keeping the collateral out of the
hands of short sellers. Incentives to do this are strongest when long positions are
most concentrated.
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Now let us examine tri-party repos from the perspective of microstructure invari-
ance. Fixed income securities are often chopped into many small issues. A single
corporation often issues dozens of different securities, even though it only has one
type of equity outstanding. Similarly, a given pool of mortgage assets is often sliced
into 20 or more tranches which trade as separate securities. Such slicing and dicing of
corporate and mortgage securities reduces the trading volume of each security. Fur-
thermore, fixed income securities are often purchased and held to maturity. To some
extent, this occurs precisely because the securities are illiquid. The combined result
is that trading volume is not only low because issue size is low but also is low because
the turnover rate of the securities is low.

Now invariance predicts that as trading volume falls, bet size also falls, but falls
at a rate proportional only to the 1/3 power of trading volume (holding volatility
constant). Consider what happens when the issue size is reduced by a factor of 8.
This reduces the size of each bet by a factor of 2 and doubles transactions costs
when measured in basis points. Thus, the size of the smaller amount outstanding,
expressed as a number of average-sized bets, decreases by a factor of 4. Business time
slows down by a factor of 4. The less competitive market for borrowing collateral
discourages short sales.

The result is low trading volume, low market liquidity, and low funding liquidity.

Derivatives To deal with these issues, the finance industry has created credit de-
fault swaps and “pay-as-you-go” swaps. Credit default swaps allow different specific
issues to be delivered against one generic issuers. They essentially allow a short seller
substitute one specific issue for another. Pay-as-you-go swaps are structured to create
a bet on an assets cash flows without the short seller having to borrow the underlying
collateral which is shorted. In effect, the pay-as-you go swap is like a repo whose term
is the maturity of the asset, except that the exchange of physical collateral is replaced
with a collateral agreement in which notional collateral is exchanged. While credit
default swaps and pay-as-you-go swaps solve the problem of borrowing and lending
collateral, they do not solve the problem of determining an accurate market price for
illiquid collateral.9 They may, however, help clarify where valuations are likely to be
most inaccurate.

Consider an asset which is being held at an inflated value by an owner who does
not want the market to recognize that the value of the asset has fallen. Suppose
that the asset is a tranche of a securitization, for which the pay-as-you-go derivative
is priced at 80 percent of its par value. The owner may nevertheless bid a price of
99 in the physical market and finance the bond in a tri-party repo arrangement. If
the intermediary values the asset at 99, smart lenders of cash will demand an extra
99− 80 = 19 percentage points of par in additional haircut to reflect its “true” value
in the derivatives markets.

9Credit default swaps, unlike pay-as-you-go swaps, also do not have an effective mechanism for
determining the cash flows which an investor receives in bankruptcy.
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6 Banking

A commercial bank is like the borrower of cash in a tri-repo transaction, except that
many parts of the business move more slowly. Copeland, Martin and Walker (2010)
compare tri-party repos with banking. There are both similarities and differences
between banks and tri-party repos.

The lenders of cash in banking are frequently retail depositors. Retail depositors
are less sophisticated than the money-market-fund asset managers and other lenders
in the tri-party repo market. Both retail depositors and asset managers need help
monitoring the creditworthiness of the banks and tri-party repo arrangement, respec-
tively. The clearing banks which administer tri-party repos help the money market
funds by obtaining independent, third-party valuations of assets, holding the assets,
and supervising the creditworthiness of the daily unwind of positions. Bank regula-
tors help retail depositors by providing deposit insurance and supervising capital and
liquidity requirements. Capital requirements for a bank play a role similar to haircuts
in a tri-party repo arrangement.

Bank capital requirements should be based both on risk 𝜎 and liquidity 𝐿 of assets,
but liquidity 𝐿 is much more important. What does microstructure invariance imply
about bank regulation?

Consider the distinction between the banking book and the trading book. The
trading book holds assets which are liquid enough to have a meaningful market price.
In principle, dollar volume 𝑃 · 𝑉 and volatility 𝜎 can be estimated, from which 1/𝐿
can be calculated.

We can think of illiquidity as beginning with returns standard deviation 𝜎, then
adjusting it for time by dividing by the standard deviation of the rate at which
bets arrive 𝑚 · 𝛾1/2. Various concepts in bank regulation also require time horizons.
Invariance suggests that these time horizons should related to the speed of the market
𝛾.

Consider the concept of value-at-risk. For our purposes, value-at-risk is a first
cousin of dollar standard deviation over a particular horizon; this gives both value-
at-risk and standard deviation dimensions of dollars per unit of square-root-of-time.
Thus, like illiquidity 1/𝐿, value at risk requires a time horizon. Invariance suggests
that different types of assets require different horizons, and these horizons should be
inversely proportional to 𝛾1/2. If so, then value-at-risk becomes a concept similar to
illiquidity 1/𝐿.

Consider assets in the banking book and not the trading book. Many of these
assets are so illiquid that they almost never trade. In the even of bank failure, it is
less costly to hold them to maturity and try to collect in bankruptcy than to sell a
portfolio of illiquid bad loans in the market.

Stress tests are a mechanism for determining an appropriate level of bank capital.
If the bank’s assets are going to be so illiquid that they cannot be sold at all, then an
appropriate stress test should freeze the bank’s portfolio, then simulate defaults over
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a long horizon. Since market prices are impossible to determine, it is appropriate that
stress tests have the flavor of an accounting exercise which simulate the dynamics of
accounting write-offs over some horizon. Since the underlying assumption is that the
asset cannot be sold, the appropriate horizon for a stress test should not be two or
three years, but should instead be much longer, say ten years.

It is appropriate for regulators to try to force a bank to raise equity when the bank
becomes undercapitalized. When a bank is in financial distress, it is by definition
highly leveraged. The market value of its assets is low, and this lowers dollar trading
volume. The volatility of the bank’s assets is high, both because the bank has high
leverage (due to low capital) and because distressed fixed income assets have higher
volatility than non-distressed assets. The resulting low dollar volume and high returns
volatility on the bank’s equity will be associated with high illiquidity 1/𝐿. Assuming
the costs of issuing equity are related to 1/𝐿, invariance therefore suggests that issuing
equity will be very costly for a weak bank.

In practice, the actual illiquidity may be even greater. Market participants may
expect the bank to be given forbearance, allowing it to delay forced equity issuance.
When equity is actually issued, the price of the bank’s equity will plunge not only
because of forced sales into an illiquid market, but also because the market digests
the news shock of not receiving more forbearance.

7 Conclusion

This paper has applied the illiquidity measure 1/𝐿 to the study of both trading
liquidity and funding liquidity.

When liquidity estimates for individual stocks, estimated from portfolio transition
orders, are extrapolated from stocks to bonds, the results substantiate the use of 1/𝐿.
Estimates of market impact costs for large bets in highly liquid 10-year Treasuries
imply are somewhat less than the depth instantaneously available in the limit order
book, suggesting that modest timing trades over microstructure horizons is important
for controlling transaction costs optimally. Estimates for larger trades in corporate
bonds are consistent with Harris (2015).

In both the Treasury market and the corporate market, the organization of the
market inflates costs for small traders. In the Treasury market, these costs are inflated
by large tick size. In the corporate bond market, these costs are inflated by an
antiquated dealer structure which makes it impossible for small trades to have limit
order protection at all.

Invariance is also relevant for thinking about funding liquidity. When the speed at
which trading activity takes place is taken into account, funding liquidity is propor-
tional to the same illiquidity measure 1/𝐿 which determines trading liquidity. The
illiquidity of corporate bonds implies that markets function very slowly and therefore
funding liquidity is very low. Bank portfolios are even more illiquid than portfolios of
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corporate bonds. The defining characteristic of commercial banking is its microstruc-
ture slowness.

References

Angel, James J, Lawrence E Harris, and Chester S Spatt. 2011. “Equity
Trading in the 21st Century.” The Quarterly Journal of Finance, 1(01): 1–53.

Angel, James J, Lawrence E Harris, and Chester S Spatt. 2015. “Equity
Trading in the 21st Century: An Update.” The Quarterly Journal of Finance,
5(01): 1550002.

Copeland, Adam M, Antoine Martin, and Michael Walker. 2010. “The Tri-
Party Repo Market before the 2010 Reforms.” Federal Reserve Bank of New York
Staff Reports, 477: available at
http://www.econstor.eu/bitstream/10419/60888/1/641201133.pdf.

Harris, Lawrence. 2015. “Transaction Costs, Trade Throughs, and Riskless Princi-
pal Trading in Corporate Bond Markets.” Working Paper, available at
\\http://dx.doi.org/10.2139/ssrn.2661801.

Joint Staff Report. 2015. “Joint Staff Report: The U.S. Treasury Market on Octo-
ber 15, 2014.” U.S. Department of the Treasury, Board of Governors of the Federal
Reserve System, Federal Reserve Bank of New York, U.S. Securities and Exchange
Commission, U.S. Commodity Futures Trading Commission. Available at
https://www.treasury.gov/press-center/press-releases/Documents/Joint_Staff_Report_Treasury_10-15-2015.pdf.

Kyle, Albert S., and Anna A. Obizhaeva. 2013. “Large Bets and Stock Market
Crashes.” Working Paper, University of Maryland.

Kyle, Albert S., and Anna A. Obizhaeva. 2016. “Market Microstruc-
ture Invariance: Empirical Hypotheses.” Econometrica, forthcoming, available at
https://www.econometricsociety.org/publications/econometrica/journal--materials/forthcoming--papers.

Kyle, Albert S., Anna A. Obizhaeva, and Yajun Wang. 2016. “Smooth Trad-
ing with Overconfidence and Market Power.” Working Paper, University of Mary-
land, available at http://dx.doi.org/10.2139/ssrn.2423207.

31


