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Abstract 

We find evidence that material insider abuse and internal fraud were present in approximately 457 (37 

percent) of the 1,237 U.S. failed commercial and mutual savings banks (hereafter, banks) between 1989 

and 2015. Using a unique dataset of the incidence of insider abuse and internal fraud among U.S. failed 

banks we analyze the characteristics of these banks with the ultimate goal of developing fraud detection 

models—parametric (logistic regression, Benford digit analysis) and non-parametric (neural networks). 

We obtain information on the incidence of insider abuse and internal fraud among failed banks from 

failing bank cases prepared for the FDIC Board of Directors, restitution orders (fines) supervisors 

assessed for bank employee fraud, and bond claims the FDIC made to recover fraud-related losses on 

failed banks. The supervisory data we use to quantify fraud among failed banks has not been used 

previously in published research and, we feel, provides more comprehensive information on fraud 

among failed banks than that available to academic researchers. This data allows us to better quantify 

the role of internal fraud among bank failures and model the likelihood of insider abuse and internal 

fraud. Our results suggest that material insider abuse and fraud at banks is detectable using Benford 

digit analysis of bank financial data for a period one-to-four years prior to failure. Specifically, we use a 

recently developed second order Benford digit test to identify those banks whose financial statements 

suggest tampering and purposeful misstatement. Unfortunately, we are unable to develop an accurate 

neural network model for fraud prediction. Finally, regression analysis of the determinants of failure 

among banks with insider abuse and fraud compared to other types of failed banks are in agreement 

with the literature on fraud in banking, which finds banks with insider abuse and fraud present will 

overstate income and asset values, under-report losses and consequently overstate capitalization.    
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ABBREVIATIONS AND ACRONYMS 

 

BC  Bond Claim 

FDIC  U.S. Federal Deposit Insurance Corporation 

RO  Restitution Order 

SEC  Securities and Exchange Commission  
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1. Introduction 

 Insider abuse and fraud committed by bank employees can be difficult to detect, especially fraud 

committed by senior bank officers who have access to all areas of bank operations.1 Insider abuse and 

internal bank fraud often contribute to bank failures. We estimate that of the 1,237 commercial and 

mutual savings banks (hereafter, banks) that failed between 1989 and 2015, approximately 457 (37 

percent) had material insider abuse and/or internal fraud that was detected by bank examiners.2 

 

We use three sources of information on the incidence of internal fraud at failed banks—FDIC failing bank 

board cases, restitution orders and bond claims. FDIC failing bank board cases are prepared by the 

FDIC’s Division of Resolutions and Receiverships for the FDIC Board of Directors to assist the Board in 

determining the most appropriate method to resolve bank failures. The failing bank board cases contain 

safety and soundness examination histories and describe events at banks that preceded bank failures, 

including insider abuse and internal fraud. Bank regulators can issue restitution orders with monetary 

fines on bank employees for fraud. Restitution orders can be issued before, during or after bank failure. 

Finally, for banks with bond insurance, the FDIC, in its role as failed-bank receiver, may file claims with 

failed-bank insurers to recover losses caused by bank employee fraud—bond claims.3  

 

It is important to point out that our measures of bank insider abuse and fraud include instances where 

bank regulators suspected fraud, as well as instances of confirmed criminal activity. Section (8) (b) (6) of 

the Federal Deposit Insurance Corporation Act (FDI Act) authorizes the FDIC to issue restitution orders. 

Under FDI Act Section (6) (b) (6) (A) there are two statutory factors the FDIC must meet:  

 

                                                           

1
 We include in this definition of fraud behavior by bank employees that while deceptive, dishonest and costly to 

the bank, did not necessarily lead to criminal court convictions. 
2
 Banks that received open bank assistance are not included in our failed-bank sample.  

3
 Between 1989 and 2015 FDIC failing bank board cases identified 202 banks with material insider abuse and/or 

internal fraud, typically involving senior bank officers. Over this same period the FDIC made bond claims for bank 
employee fraud for 205 failed banks and bank supervisors issued material restitution orders on 213 failed banks; 
resulting in 457 banks with fraud-related penalties and/or insurance claims. Restitution orders can be for very 
small amounts, hence, we use a materiality threshold that requires the sum of restitution orders issued to a bank’s 
employees (before, during and after failure) to be at least 25 percent of FDIC resolution costs for the bank and use 
the 213 material restitution order cases to obtain our total fraud-related bank failure count. We point out there is 
substantial overlap among our three fraud-related failed-bank flags—FDIC failing bank board cases, restitution 
orders and bond claims. 
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1) the bank was unjustly enriched through a violation of law, regulation or unsafe and unsound practice, 

2) the act or practice involved a reckless disregard for the law or regulation.4  Many restitution orders 

the FDIC issues are the result of criminal activity in which the defendant has been found guilty or plead 

guilty in court. Bond claims are based on dishonest and fraudulent activity by bank employees that may 

or may not have resulted in criminal court convictions. Finally, FDIC failing bank board cases discuss 

insider abuse, violations of bank regulation and instance of suspected criminal activity.  Since we are 

interested in approaching the problem of insider abuse and internal bank fraud as a risk to the deposit 

insurer we do not limit our analysis to instances where fraudulent activity was confirmed by the courts. 

To acknowledge this approach, we use the terms insider abuse and bank fraud to include instances 

where dishonest and deceptive behavior by bank insiders were found by bank regulators regardless of 

the criminality of that behavior.       

 

U.S. bank supervisors focus their surveillance programs on financial risks—credit, concentration, 

country, liquidity and market risks. U.S. bank supervisors also conduct onsite inspections of bank 

controls for money laundering and suspicious activity; however, these inspections are aimed at 

fraudulent activity by bank customers who may be acting with or without the cooperation of bank 

employees. The fraud detection framework we propose in this paper is designed for offsite detection of 

material insider abuse and fraud by bank employees and senior management. 

 

The remainder of the paper is organized as follows. Section 2 reviews the literature on fraud and bank 

fraud in particular. Section 3 presents our proposed framework for detecting insider abuse and internal 

bank fraud. Section 4 discusses the literature on offsite detection of fraud. Section 5 discusses our data 

on insider abuse, internal bank fraud and fraud risk indicators, followed by model calibration and results 

in Section 6. Section 7 concludes.  

2. Previous Literature on Fraud  

Fraud is defined as “a deliberate deception practiced so as to secure unfair or unlawful gain”.5 Cressey 

(1951) interviewed violators of financial trust, e.g., embezzlers, at the Illinois state penitentiary at Joliet 

to understand the reasons why individuals in trusted positions committed fraud, i.e., became trust 

violators. Cressey (1951) found three conditions motivate all trust violations: 1) individuals must 

                                                           

4
 See “Formal and Informal Action Procedures (FIAP) Manual, (December 21, 2015). FDIC, chapter 10. 

5
 See “Webster’s II New Riverside University Dictionary”, The Riverside Publishing Company, Boston MA (1984).   
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perceive they are under some form of financial pressure they cannot share with others, 2) be able to 

rationalize fraud with their trusted position and 3) have the opportunity to resolve their financial 

problems through fraud. Cressey (1951) found that all three of these conditions must be present for 

trust violations to occur. Cressey’s scientific approach to understanding financial crime is a departure 

from moralistic explanations that the causes of trust violation are individuals’ bad habits, e.g., gambling, 

and personal and business failures. In Cressey’s model, these habits, personal and business failures 

create financial pressure; the trusted position provides opportunities for fraud and an individual’s 

decision to not seek help in resolving financial pressure are the conditions necessary for trust fraud to 

occur.6 Trust violators may feel perfectly legal and ethical failings, e.g., business losses, indicate personal 

deficiencies of such magnitude they will not share the financial pressure with anyone. The inability to 

share the financial pressure is based on the trust violator’s perception; as Cressey (1951) points out, 

where one banker might seek help for his failing bank another might be too ashamed to seek help.  

Wheeler (1982) examines the nature of white-collar crime using information from pre-sentencing 

investigations (PSI) for eight categories of white-collar crime—antitrust violations, securities fraud, 

postal and wire fraud, false claims, credit and lending institution fraud, bank embezzlement, tax evasion, 

and bribery. The PSI sample covers fiscal years 1976 through 1978 and includes a national sample of 

antitrust and securities crimes and a sample of cases from seven federal district courts for the remaining 

six categories of white-collar crimes. The PSI data provide descriptions of the fraud and the context in 

which it was carried out, as well as details on individuals charged with the fraud. Wheeler (1982), using 

the PSI data, categorized offenders into three types—individual, occupational and organizational. 

Individual offenders committed the crime alone and did not use their occupation or an organization to 

carry out the crime. Occupational offenders may have committed the crime alone or with others and 

their occupation played a role in the crime. Finally, organizational offenders worked alone or with others 

in carrying out the crime and their occupation and organization both played a role in the crime.7 

Wheeler’s main hypothesis is that white-collar criminals can use the organization as a tool with which to 

carry out the crime. Wheeler (1982) found that organizational crimes occurred more frequently, lasted 

over longer time periods, had wider geographic scope, and had a greater impact in terms of both dollars 

                                                           

6
 Cressey (1951) reports that many trust violators he interviewed stated they did not spend stolen money on 

gambling or other illicit activity but were pressured by police to come up with a better explanation of where the 
money went than what they initially (truthfully) told police. Cressey (1951) also suggests courts anxious for 
conviction preferred low moral character as a factor in trials since it made convictions easier for prosecutors. 
7
 Wheeler combined occupational and organizational attributes of offenders because the nature of organizational 

offenders made it impossible to separate the two attributes.  
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stolen and number of victims adversely affected by the crime than did frauds carried out by individual 

and occupational offenders. Organizational offenders tended to be older, better educated, hold higher 

positions in companies and have fewer, if any, prior criminal offenses than did occupational and 

individual offenders.8 Wheeler (1982) suggests that organizational offenders’ relatively impeccable 

credentials allowed them to gain the trust that permits fraudulent activity to be more lengthy and 

widespread. The organization also allows offenders to hide the crime through falsification of documents. 

Wheeler (1982) concludes the organization is used by the offender to carry out a much grander crime 

than would be otherwise possible. While Wheeler (1982) found convicted organizational offenders 

served somewhat longer prison sentences than did occupational and individual white-collar offenders, 

the difference was small, suggesting less punishment relative to damage done compared by other white-

collar criminals.9  

Albrecht (1991) examines fraud in government entities and private companies. Albrecht (1991) explains 

that those who commit fraud are typically perceived to be honest and have earned trust in the 

organization. Albrecht (1991) introduced the term “fraud triangle” to combine the three conditions 

Cressey (1951) found necessary to motivate fraud—perceived pressure, opportunity and 

rationalization.10 

Figure 1. Fraud Triangle 

 

 

 

 

 

Albrecht (1991) comments that of the two most general ways to obtain money from organizations 

illegally—simple theft and theft by deception—the vast majority of crimes against organizations are 

                                                           

8
 Wheeler (1982), pp. 1419–1420. 

9
 Wheeler (1982) acknowledged that since organizational criminals tended to have higher rates of representation 

by private lawyers (over 90 percent of court cases) compared to other white-collar criminals, this may have also 
been a factor in length of incarceration.  
10

 Albrecht (1991) states the fraud triangle is similar to the fire triangle in which oxygen, heat and fuel are 
necessary for a fire to exist and if any of these three factors is missing, fire cannot exist. 

Opportunity 
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thefts by deception and fraud carried out by employees of the organization. In terms of the mechanics 

of frauds committed against organizations, Albrecht (1991) states there are three main approaches: 1) 

receipts fraud, 2) theft of assets and 3) disbursements fraud. There are many ways in which frauds are 

carried out within each of these three general approaches. Receipts fraud can be accomplished by 

stealing duplicate payments, stealing payments on bad debt, or crediting accounts while stealing 

receipts, to name just three examples.11 Theft of assets can be accomplished by, for example, theft of 

cash, inventory and fixed assets, as well as using company assets for personal use.12 Perhaps the most 

elaborate frauds are designed to steal using disbursements made by the company and may involve 

collusion with individuals outside the company being defrauded. Examples of disbursements fraud 

include vendor fraud in which an employee arranges to overpay a vendor in return for cash kickbacks 

and/or other gifts from the vendor, payroll frauds in which ghost employees are paid, and health claims 

fraud. 13 In terms of impact, Albrecht (1991) states that business losses due to disbursements fraud 

exceeded the combined losses from receipts fraud and asset theft. Frauds against organizations can be 

prevented by reducing each of the three incentives for fraud—perceived pressure, opportunity and 

rationalization. Albrecht (1991) comments that a healthy work environment that encourages employee 

and management communication can reduce fraud by addressing low employee moral that can lead 

employees to rationalize fraud, as well as giving employees legal ways to address financial pressures. 

Finally, while improvements in companies’ internal controls can reduce fraud, Albrecht (1991) states 

that internal control systems are not designed to catch frauds involving collusion with other employees 

and individuals outside the organization.     

Akerlof and Romer (1993) develop a theory of fraud to explain four financial crises that followed 

economic boom–bust cycles during the 1980s—U.S. savings and loan associations (S&Ls) crisis, Texas 

real estate market collapse, junk bond market collapse and the financial crisis in Chile. Akerlof and 

Romer (1993) model a firm whose owners have limited liability, i.e., owners can at most lose their 

ownership stake in the firm. Under normal circumstances firm owners will seek to maximize firm value, 

V, since their earnings from the firm, i.e., dividends, increase with V. Thus, under normal circumstances 

firms owners seek investments in projects with positive net present value. Normal circumstances are 

defined here as periods where V exceeds the maximum dividends owners can extract from the firm, M*. 

                                                           

11
 Albrecht (1991), p. 29.  

12
 Albrecht (1991), p. 29.  

13
 Albrecht (1991), p. 29.  
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Akerlof and Romer (1993) point out that the maximum amount of dividends that can be extracted from 

a bank or S&L is limited by regulatory minimum capital requirements. Under most circumstances it is 

unlikely that M* can exceed V since capital requirements are set high enough to prevent this from 

occurring. In the 1980s, however, the S&L industry suffered a severe decline in capitalization due to a 

spike in short-term interest rates that resulted in negative net interest income generated by a severe 

mismatch in the maturities of S&Ls’ assets and liabilities—S&Ls lent long on 30 year mortgages with 

fixed interest rates but borrowed short, relying on deposits with short-term maturities.14 The result of 

the Treasury yield curve shock was most S&Ls had negative market value. S&L regulators—state and 

federal—permitted regulatory accounting rules that masked losses and allowed S&Ls to record false 

profits and high capital.15 S&L regulatory capital requirements were also reduced.16 The result was that 

M* exceeded V for most S&Ls, hence thrift owners sought ways to extract funds from S&Ls, extracting 

enough to drive S&Ls into bankruptcy.  Akerlof and Romer (1993) explain that the types of projects 

ideally suited to extracting M* are those that allow a S&L to record paper profits even when the project 

generates no cash flow to the S&L. With a limited set of positive NPV project available, thrift owners 

turn to a much larger set of negative NPV projects that boom-bust cycles provide. Many types of 

negative NPV projects were ideally suited to generating false revenues and profits that S&L owners 

could extract from the thrift while still recording high S&L profits and capital under lax accounting rules. 

Akerlof and Romer (1993) point out that losses generated by the purposeful bankruptcy strategy greatly 

exceed what owners were able to extract from thrifts, banks and other financial organizations during the 

four 1980s financial crises they studied, due in part to spillover effects on firms still pursuing firm value 

maximization and in part due to the bankruptcy for profit strategy’s fueling of the economic boom–bust 

cycle. For these reasons, Akerlof and Romer (1993) characterize the bankruptcy for profit strategy as 

looting. In terms of the regulatory environment, Akerlof and Romer (1993) explain that in addition to 

reduced regulation and supervision and lax accounting standards there were changes to market 

regulation that allowed for increases in the concentration of S&L ownership which also contributed to 

the S&L crisis.17 Akerlof and Romer (1993) comment that regulation that allowed for sole ownership of 

S&Ls made it easier for an owner to run the thrift for personal benefit.18 Further, relaxed S&L regulation 

in two states—California and Texas—lead to a competition in laxity, and further fueled the boom–bust 

                                                           

14
 Akerlof and Romer (1993), p. 23. 

15
 Akerlof and Romer (1993), p. 25. 

16
 Akerlof and Romer (1993), p. 25. 

17
 Akerlof and Romer (1993), pp. 24–25. 

18
 Akerlof and Romer (1993), p. 25. 
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cycle in those states as S&Ls changed from federal to state charters to take advantage of lax state 

regulation.19       

In the case of the Texas real estate crisis the bankruptcy for profit strategy Akerlof and Romer (1993) 

describe was achieved by making loans for the acquisition, development and construction of commercial 

and residential real estate (hereafter, ADC loans). ADC loans are ideally suited to internal bank and thrift 

fraud since the true value of the project won’t be known until it is completed three-to-five years after 

the lending begins. During the Texas real estate crisis ADC loans were made with no equity interest 

required of borrowers (real estate developers) and interest payments and fees borrowers “paid” to 

banks were made through interest reserves bank established (lent) for borrowers.20  GAAP and 

regulatory accounting rules allowed banks and thrifts to record ADC loan interest and fees as income 

and effectively pay themselves all reported profits on the ADC loan during the real estate development 

period.21 ADC loans were also often made with no property purchase or take-out financing 

commitments but rather were made on a speculative basis. 22 ADC loan growth was widespread during 

the 1980s Texas real estate sector boom period, allowing banks and thrifts to report high profits and 

growing capital. During the 1980s crisis, Texas ADC lending persisted as real sector indicators, such as 

commercial property vacancy rates and home sales, deteriorated.23 As the real estate sector 

deteriorated many lenders tried to hide problem loans through various schemes such as making loans to 

real estate developers to purchase projects from the initial developer to hide defaults and manipulate 

real estate prices.24 The junk bond market collapse and Chilean financial crisis also followed the 

bankruptcy for profit strategy according to Akerlof and Romer (1993); for brevity we do not discuss 

those crises here.  

Green and Reinstein (2004) examine financial statement fraud among publicly traded banks and savings 

and loan associations (S&Ls) that was detected by the Securities and Exchange Commission (SEC). Green 

and Reinstein (2004) use a sample of 64 banks and S&Ls that the SEC identified as releasing fraudulent 

                                                           

19
 In addition to charter changes, studies have shown there was a substantial increase in new bank charters (de 

novo banks) during the 1980s banking crises; see for example, O’Keefe (1990), FDIC (1997). New bank charters also 
increased prior to the 2007–2009 financial crises, as shown by Lee and Yom (2016). 
20

 Akerlof and Romer (1993), pp. 27–28. 
21

 Akerlof and Romer (1993), pp. 27–28. 
22

 See, for example, O’Keefe (1990) and FDIC (1997). 
23

 See, for example, O’Keefe (1990) and FDIC (1997). 
24

 Akerlof and Romer (1993), p 17. 
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financial statements between 1979 and 1996.25 This sample allowed Green and Reinstein (2004) to study 

how management fraud changed over time and to investigate the impact of changes in economic 

conditions, regulation and public scrutiny of bank and S&L financial statements, on the types of fraud 

that occurred. There were a number of changes to oversight and regulation of public accounting 

between 1979 and 1996 that tightened public scrutiny. Green and Reinstein (2004) find that increased 

regulation and scrutiny did not change the frequency of financial statement fraud but did alter how it 

was carried out. Specifically, the authors conclude that banks and S&Ls became more willing to withhold 

information than alter information in the latter part of their sample period. Green and Reinstein (2004) 

examine the frequency of fraud by audit area—Accounts Receivable, Cash, Investments, Loans 

Receivable, Reserves for Loan Losses, and Revenues, Gains and Losses. For both the 1979–1987 and 

1988–1996 sub-periods the authors find the majority of frauds occurred in Investments, Reserves for 

Loan Loss reporting and Loans Receivable. The tenor of the financial reporting fraud in the Green and 

Reinstein (2004) sample was failure to recognize deterioration in asset value, e.g., overstate the value of 

investments and include uncollectable loans among loans receivable, and understate loss reserves.26 In 

terms of the methods used to misstate financials, Green and Reinstein (2004) find inadequate or 

misleading disclosures and inaccurate accounting estimates comprised over 50 percent of the instances 

of fraudulent activity in their sample.27 Other methods used to misstate financials in the Green and 

Reinstein (2004) sample include early recognition, fictitious documents, unsupported journal entries, 

lack of detail books, and entry misclassification of accounts.28  

Black (2005) provides a detailed accounting of the S&L crisis of the 1980s and attributes the S&L failure 

waves to widespread internal bank fraud, specifically fraud carried out by the most senior bank officers, 

which Black (2005) calls control fraud. Black (2005) finds that insider abuse and internal bank fraud by 

senior bank officers occurs more frequently during economic growth periods when banks increase 

lending to support the real sector growth. During the early phases of the economic cycle bank loan 

growth rates accelerate and loan concentrations in risky loan types increase as well. Black (2005) 

observes that loan growth is aided by relaxed internal lending standards, weak risk management and 

ineffective oversight by thrift boards of directors. According to Black (2005), during the economic 

                                                           

25
 The SEC issues enforcement actions against banks and S&Ls that SEC examiners found to be issuing fraudulent 

financial statements. The enforcement actions are available in the SEC’s Accounting and Auditing Enforcement 
Releases (AAER). 
26

 Green and Reinstein (2004), p. 96.  
27

 Green and Reinstein (2004), p. 99. 
28

 Green and Reinstein (2004), p. 99. 
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growth phase the regulatory environment is characterized by lax bank supervision (de-supervision), 

accommodating bank regulation (de-regulation) and a supportive political environment. New lending is 

typically concentrated in those products where loan collateral value and loan repayment risk are difficult 

to estimate.29 As the economic cycle slows fraudulent activity becomes increasingly difficult to hide as 

many frauds were Ponzi schemes that depended on loan growth for cash flow.30 At the end of the 

economic cycle loan collateral value deteriorates rapidly when the bubble in asset prices (collateral 

values) bursts. These market conditions also occurred during the 2007–2009 U.S. financial crisis; 

therefore, Black (2005, 2009) finds increases in bank and thrift fraud during financial crises in general.31     

Povel, Singh and Winton (2007) develop a theoretical model of corporate financial statement fraud 

designed to explain the increase in the frequency of fraud that tends to be revealed toward the end of 

economic boom periods in many industries.32 Povel, Singh and Winton (2007) model the fraud that 

poorly performing firms might engage in to mask their true condition so as to attract investors. In the 

model invested funds allow for project finance that also confers benefits to the firm manager. Investors 

can choose to rely on publicly available information or more costly monitoring of firms when deciding 

whether or not to invest in firms. In the model, investors are more willing to rely on public information 

when overall economic conditions are good because they base their prior beliefs about firms’ conditions 

on the average number of financial sound firms, i.e., become optimistic.33 Since investors will monitor 

companies with poor performance and are less likely to invest in these firms, poorly performing 

companies have an incentive to misrepresent their financial condition when overall economic conditions 

are good. 34 Conversely, investors become pessimistic when economic conditions are bad, i.e., average 

company performance is poor, and will rely on monitoring to assess companies’ conditions during these 

periods, thereby reducing incentives for financial statement fraud. 35 

                                                           

29
 Black (2005), pp. 48–50. 

30
 Black (2005), pp. 48–50. 

31
 See, for example, O’Keefe (1990) and FDIC (1997). 

32
 Previous studies have documented increases in bank fraud toward to end of economic boom periods that are 

followed by bank failure waves. See, for example, Akerlof and Romer (1993) and Black (2005, 2009).  
33

 Povel, Singh and Winton (2007), p. 1220. 
34

 Povel, Singh and Winton (2007), p. 1220. 
35

 Povel, Singh and Winton (2007), p. 1220. 
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Finally, Black (2009, 2010) uses a medical analogy to describe internal bank fraud.36 Black (2009, 2010) 

states that the occurrence of internal thrift financial fraud is akin to the spread of infectious diseases 

that require an environment conducive to the pathogen (i.e., a virus or bacteria), a vector (i.e., 

mechanism that spreads the pathogen) and a host (i.e., infected individual). The environment, 

pathogens, vectors and hosts Black (2009) describe are based on the S&L crisis of the 1980s which Black 

(2009) argues was repeated during the 2007–2009 U.S. financial crisis. 

3. Proposed Fraud Detection Framework  

The findings of the academic literature on financial fraud are consistent with what bank examiners 

observed at FDIC-insured failed banks between 1989 and 2015.  We next present a fictional failing bank 

board case that is designed to reflect the discussions of insider abuse and fraud we read in FDIC failing 

bank board cases: 

The bank departed from the business plan approved by supervisors when its charter was 

approved in 2004. The bank’s original business plan was to concentrate on local consumer and 

small business lending. In 2006 the bank changed its focus to lending for real estate acquisition, 

construction and development (ADC loans), as well as sub-prime residential real estate. Loan 

growth and loan concentrations have increased the bank’s risk exposure substantially as the 

ADC loan-to-equity ratio increased from 50 percent to 600 percent between 2004 and 2008. 

Bank management has not put in place proper risk controls, used weak lending standards and 

questionable real estate appraisals. The bank’s ADC loans allow for 100 percent financing with 

interest reserves, and a majority of the ADC and residential real estate lending has been well 

outside the bank’s branch and office market area. The bank’s board of directors has not 

exercised proper oversight of the bank and bank management. The bank’s CEO and president 

holds a majority interest in the bank and dominates decision making at the bank. Examiners 

identified conflicts of interest for the CEO and two board members. Lending limits to insiders 

have been exceeded, resulting in the FDIC filing a notice of Reg. O violation. FDIC also issued a 

Section 8.e “removal of officers” enforcement action in 2008 to remove the bank CEO after 

examiners found loan files had been altered by the CEO to mask non-performing status. In 

addition, examiners identified potential fraudulent loans to real estate development companies 

in which the CEO had a business interest and FDIC has referred the matter to the Department of 

Justice. The bank’s financial statements are not reliable since the bank has under-reported asset 

quality problems and overstated earnings and capital. The new CEO, who joined the bank in 

2009, has little previous experience in banking and has been unable to obtain new capital to 

cover loan losses, reduce the nonperforming ADC and residential mortgage loan exposures and 

                                                           

36
 Black (2009) credits the now defunct regulator of savings and loans associations, the Federal Home Loan Bank 

Board, for applying the “health sciences metaphor” to describe internal bank fraud.  
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has been otherwise unable to turn the bank around. The bank was declared insolvent and closed 

by the Georgia Department of Banking and Finance on “failure date” 2009.    

As this illustrative example case makes clear, many 1989–2015 failed banks exhibited the characteristics 

of fraudulent organizations described by Wheeler (1982), Albrecht (1991), Akerlof and Romer (1993), 

Green and Reinstein (2004), Black (2005) and Povel, Singh and Winton (2007). We now combine the 

previously discussed characteristics of the environment, vectors and hosts associated with insider abuse 

and internal fraud at failed banks to develop a framework for fraud detection (hereafter, proposed fraud 

detection framework). Figure 2 uses Black’s (2009, 2010) health sciences metaphor to illustrate our 

proposed fraud detection framework. We use this framework to identify risk indicators that will serve as 

inputs for fraud detection models (section 6).  

Figure 2. Bank Control Fraud: Health Sciences Metaphor 

 

4. Previous Literature on Fraud Detection  

Fraud has been a constant force historically and, according to Bolton and Hand (2002), is expanding in 

frequency and severity with societies’ increased reliance on technology. There is a correspondingly 

growing literature on fraud detection. In this section, we discuss commonly used empirical approaches 

Environment: Economic expansion, high-
growth in bank lending and concentrations of 

credit associated with de-regulation, de-
supervision and lax bank risk management 

Vector: Loan Securitization Market 

Host: Money Center Bank 

Host: Regional Bank 

Vector: Brokered Deposit 
Market  

Host: Community Bank 

Host: De Novo Bank 

Vector: Mortgage 
Brokers 

Host: Community Bank  

Host: Community Bank 

Pathogen: Control Fraud 
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for fraud detection.37 Since there are a large number of diverse approaches for fraud detection we focus 

on those approaches that have been successfully applied to detecting financial fraud in banks.    

Bolton and Hand (2002) review the literature on the detection of several types of fraud, such as credit 

card, money laundering, e-commerce, computer intrusion and telecommunications fraud. Bolton and 

Hand (2002) describe two general statistical methods for fraud detection—supervised and unsupervised 

methods. Supervised methods use datasets where instances of fraud have been confirmed to train 

models that distinguish fraudulent from non-fraudulent patterns in the data.38 Supervised statistical 

models such as linear discriminant analysis, logistic regression, neural networks and a variety of machine 

learning algorithms have been successfully used to develop empirical fraud detection models by looking 

for patterns in the data on observations with fraud present and applying this information to classify new 

data as having high potential to be fraudulent or not.39 Bolton and Hand (2002) state some types of 

fraud typically involve more than one individual—e.g., telecommunications fraud and money 

laundering—and that analyses such as record link and social network analysis have been used to relate 

individuals involved in fraud together. Unsupervised methods can be applied to datasets where 

instances of fraud need not be known a priori since the methods rely of pre-identified rules for detecting 

fraud (i.e., do not need to be trained on fraud data). Unsupervised methods look for outliers in the data 

relative to expected values. A widely used method of unsupervised fraud detection is statistical digit 

analysis based on the Law of Anomalous Numbers (aka, Benford’s Law). Bolton and Hand (2002) point 

out that since statistical fraud detection can at best point to the likelihood of fraud, the output of these 

models is a suspicion score that indicates the likelihood an observation in the data represents an 

incidence of fraud.40 Given the wide variety of statistical fraud detection approaches, there can be a 

correspondingly wide variety of suspicion scores. Bolton and Hand (2002) discuss using suspicion scores 

to rank order observations and focusing investigative efforts on those entities with the highest rank-

ordered scores.41 We next discuss popular approaches for statistical fraud detection, starting with 

unsupervised methods—Law of Anomalous Numbers—followed by supervised methods—logistic 

regression and neural networks.  

 

                                                           

37
 Fraud prevention is outside the scope of this paper. 

38
 Bolton and Hand (2002), p. 236. 

39
 Bolton and Hand (2002), p. 237. 

40
 Bolton and Hand (2002), p. 237.  

41
 Bolton and Hand (2002), p. 236 
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4.1. Law of Anomalous Numbers  

Newcomb (1881) and Benford (1938) are credited with independently discovering the Law of 

Anomalous Numbers; since Benford’s exposition of the Law is more comprehensive than Newcomb’s, 

we next discuss Benford’s seminal paper on the Law of Anomalous Numbers. Benford (1938) was a 

physicist working for General Electric Company when he presented his paper on the Law of Anomalous 

Numbers at a meeting of the American Philosophical Society.42 Benford (1938) states, “It has been 

observed that the pages of a much used table of common logarithms show evidences of a selective use 

of the natural numbers.”43 More specifically, the observation was that the first pages of a table of 

common logarithms (base 10 logarithms) show more wear and tear than do subsequent pages. Benford 

(1938) refers to the Arabic numerals 1 through 9 as the natural numbers. The first pages of the common 

logarithm table cover numbers that begin with the digit 1, and show for example, the log of 1.10 is 

0.0414 while the last pages of the table cover numbers that begin with the digit 9. Benford surmised 

that this reflected the possibility that engineers, mathematicians and scientists who used logarithmic 

tables to make calculations involving items that can be represented by numbers—e.g., areas around 

lakes, populations, death rates and air pressure—used numbers that began with the digit 1 more than 

they used numbers that began with the digit 9.44 To be clear, a number is a measure such as the 

population of a city, e.g., 230,456, while the first digit is the specific Arabic numeral that appears at the 

beginning of the number, here “2”, and the second digit appears second, here “3”, and so on.45   

 

Benford (1938) investigated his “selective use of natural numbers” hypothesis by obtaining 20,229 

samples for 20 very different categories of measures—areas of rivers, size of populations, death rates, 

air pressure and atomic weights, to name but five measures.46 The number of observations by 

measurement category varied from a low of 91 (Atomic Weight) to a high of 5,000 (mathematical 

functions of digits, e.g., square root). Benford (1938) measured the frequency of the first digit for the 

                                                           

42
 Benford (1938). 

43
 Benford (1938), p. 551. 

44
 Benford (1938), p. 551.   

45
 We would like to point out that logarithm table wear and tear could simply reflect the fact that English language 

books are read from left to right, so that individuals flipping through a book or tables will naturally include the 
initial pages of the book or tables in their search for specific pages more often then they reach the end of the book 
or table. Benford’s (1938) research on digit frequency, however, lends credence to the logarithmic table 
hypothesis.   
46

 Benford (1938) provides very little information about the 20 categories of measures, and does not define all of 
them; hence, categories such as “Design” and “Drainage” remain a mystery.  
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Arabic numerals 1 through 9 for all 20,229 observations.  Table 1 shows the average frequency of the 

first digit for Benford’s full sample.47  

Table 1. Digit Frequency for a Set of 20,229 Measures 

 First Digit Frequency as a Percent of Total Number of Observations 

Number 1 2 3 4 5 6 7 8 9 

Average 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 

  

Benford (1938) imposed four restrictions on his experiment on digit frequency. First, the 20 categories 

of measures were unrelated to one another, e.g., population versus atomic weight. Second, for any 

number preceded by a decimal or a zero, preceding zeros were ignored and only the first digit between 

1 and 9 was considered; hence for a number such as 0.01256 the first digit was taken as “1”. Third, only 

measures with four digits or more were included in the sample; hence our prior example qualifies—

1256. Fourth, Benford (1938) selected ...”data that is not too restricted in numerical range, or 

conditioned in some way too sharply…”48  Benford (1938) did not give any examples of the measures in 

his sample and did not explain what “conditioned too sharply” means. We will assume Benford (1938) 

was explicitly acknowledging the possibility of some potential truncation and rounding of numbers in his 

sample but that the overall alteration of numbers was minimal. We return to this topic later in this 

section. 

Benford (1938) does not address the treatment of negative numbers. Clearly, one cannot directly apply 

negative numbers to a logarithmic distribution function so absolute values of negative numbers would 

need to be taken before applying digit analysis. The Association of Certified Fraud Examiners (ACFE) 

recommends doing separate digit analyses on negative and positive numbers because the incentive to 

manipulate numbers works in opposite directions for negative versus positive numbers. ACFE explains 

that for measures such as net income, a company’s management has an incentive to overstate positive 

net income, however, if net income is negative managements’ incentive is to report as small a loss as is 

possible or understate losses.49 

                                                           

47
 Benford (1938), p. 553. 

48
 Benford (1938), p. 552. 

49
 See Association of Certified Fraud Examiners. 
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Benford (1938) made a deliberate effort to collect data from as many fields as was possible and to use 

measures with “various degrees of randomness”.50 Some of the measures, such the street address 

numbers of the first 342 people mentioned in one issue of American Men of Science magazine, are 

arguably random numbers.51 At the other extreme, Benford (1938) points out that some measures in his 

sample follow fixed laws or are otherwise closely related, such as …“Molecular Weights, Specific Heats, 

Physical Constants and Atomic Weights”.52  

 

Benford (1938) observed that for the random numbers in his sample, the first digit frequencies closely 

follow a logarithmic distribution function: 

  

“The frequency of first 1's is then seen to be 0.306, which is about equal to the common 

logarithm of 2. The frequency of first 2's is 0.185, which is slightly greater than the logarithm of 

3/2. The difference here, log 3 - log 2, is called the logarithmic integral. These resemblances 

persist throughout, and finally there is 0.047 to be compared with log 10/9, or 0.046.”53  

 

Based on these findings, Benford (1938) proposes that for sets of unrelated, random measures the 

frequency of the first digit, “a”, follows a logarithmic function, Fa, as shown is equation 1.54 

 

𝐹𝑎 = 𝑙𝑜𝑔 (
𝑎 + 1

𝑎
)                                                                                                                                 (1. ) 

 

Benford (1938) observed that a nonrandom numbers’ first digit frequencies show the most divergence 

from the logarithmic distribution, hence he calls the logarithmic distribution rule the Law of Anomalous 

Numbers. Benford (1938) also finds that numbers with fewer than four digits do not follow the 

logarithmic distribution rule but rather follow a different, geometric distribution.55 Benford (1938) 

points out that the Law of Anomalous Numbers is about events, i.e., frequencies of digits, and not about 

natural numbers and digits themselves.   

  

                                                           

50
 Benford (1938), p. 552. 

51
 Benford (1938), p. 560. 

52
 Benford (1938), p. 557.  

53
 Benford (1938), p. 553. 

54
 Benford (1938), p. 554. 

55
 Benford (1938), p. 554. 
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Following the logic of the logarithmic distribution function, that second place digit frequencies must 

take the first digit into account. To see this, consider a two digit number, “ab”, where “a” is the first digit 

and “b” is the second digit. The frequency of second digit “b” occurring in otherwise random sets of 

numbers, Fb, given first digit "a" occurred, is shown in equation 2:56 

𝐹𝑏 = 𝑙𝑜𝑔 (
𝑎𝑏 + 1

𝑎𝑏
) 𝑙𝑜𝑔 (

𝑎 + 1

𝑎
)⁄                                                                                                      (2. ) 

 

Summing equation 2 over all possible combinations of a specific second digit, a, and the nine possible 

first digits, b, yield the probability of second digit b occurring.   

We would like to point out that equation 2 follows Bayes’ Theorem, where the conditional probability of 

“b” occurring given “a” has occurred is equal to the ratio of the joint probability of “a” and “b” to the 

probability of “a” occurring.  

𝑃(𝑏|𝑎) = 𝑃(𝑏  𝑎) 𝑃(𝑎)⁄                                                                                                                    (3. ) 

 

The logarithmic distribution functions can also be used to generate expected digit frequencies for higher 

order of digits, e.g., third, fourth, and fifth digit, as well as combinations of digits, e.g., first two digits, 

that follow Benford’s Law. For brevity we do not derived those frequency functions here. 

 

Benford (1938) shows the first digit frequencies for random numbers follows the logarithmic distribution 

function well but that numbers that follow fixed rules, e.g., scientific constants, have first digit 

frequencies that diverge the most from the logarithmic distribution among the 20 measurement 

categories. Benford (1938) concludes, “these facts lead to the conclusion that the logarithmic law 

applies particularly to those outlaw numbers that are without known relationship rather than to those 

that individually follow an orderly course; and therefore the logarithmic relation is essentially a Law of 

Anomalous Numbers.”57 Benford (1938) next investigates the causes of the Law of Anomalous Numbers, 

and studies natural phenomena, such as individual’s reactions to external stimuli. Benford (1938) 

explains that individual’s reactions to light, sound, radiation and toxins closely follow a logarithmic 

                                                           

56
 Benford (1938), p. 555. 

57
 Benford (1938), p. 557.  
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distribution law.58 Conversely, man-made measures or scales for fields such as music and mechanical 

devices, such as drill bits and light bulb wattage, follow a geometric distribution.59    

4.1.1. Fraud Detection Using the Law of Anomalous Numbers 

Newcomb (1881) and Benford (1938) do not mention the application of the Law of Anomalous Numbers 

to fraud detection; however, its application to fraud detection and financial fraud in particular, has been 

widespread. Durtschi, Hillison and Pacini (2004) review the literature on Benford’s Law, focusing on the 

application of the Law to detecting fraud in accounting data. Durtschi, Hillison and Pacini (2004) 

conclude that it is appropriate to apply Benford’s Law to accounting data since studies by Carslaw 

(1988), Boyle (1994), Hill (1995), Nigrini (1996, 1999), Nigrini and Mittermaier (1997) and others show 

that most accounting numbers result from combining different, independent random data in several 

ways (addition, subtraction and division) and behave as anomalous numbers. Durtschi, Hillison and 

Pacini (2004) also point out that certain accounting numbers do not follow Benford’s Law but rather 

follow an orderly course as evidence of human thought, such as assigned numbers, e.g., check numbers, 

order numbers, and other numbers resulting directly from human thought, e.g., ATM withdrawals. 

Further, Durtschi, Hillison and Pacini (2004) describe the prices of goods and services as reflecting 

“psychological barriers” that affect digit frequencies, and do not follow Benford’s law. For example, 

retailers often prefer to price products at the next lowest price, e.g., $1.99 versus $2.00, apparently 

because shoppers place disproportionate significance on immaterially lower prices. Before applying the 

Law of Anomalous Numbers to financial fraud detection we consider two possible avenues for bank 

financial statements to reflect an orderly course—fraudulent and non-fraudulent.60   

 

Fraudulent Orderly Courses 

A bank employee who issues loans to fictitious borrowers is likely adding non-naturally occurring 

numbers to the bank’s loan portfolio. Other examples of bank employee fraud include schemes to 

refinance nonperforming loans to hide defaults, using fictitious real estate appraisals and other fictitious 

documentation to get loans approved and altering past-due loan customers’ records to make account 

payment status current.  In the case of frauds committed by bank senior officers it is also possible that 

                                                           

58
 Benford (1938), p. 562.  

59
 Benford (1938), p. 563. 

60
 The empirical literature on financial fraud that we are aware of does not consider the possibility of non-

fraudulent factors, other than number rounding and truncation, which might result in non-random financial 
statement entries. 
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the bank financial statements are directly altered to mask the fraud. Whether these frauds are 

detectable from analysis of banks’ balance sheet and income statements depends on the duration and 

materiality of the fraud. Our main hypothesis is that material internal fraud is detectable by observing 

significant deviations in digit frequencies from the logarithmic distributions posited by Benford (1938) 

for relevant balance sheet and income statement entries.  We will quantify what we mean by relevant 

entries and significant deviations in section 6.1.   

 

Non-fraudulent Orderly Courses 

To begin, consider the dominant activity at banks—lending. The amounts that bank customers seek to 

borrow largely depend on loan purpose and borrowers’ ability to repay the loan. Banks approve loan 

applications based on customer credit worthiness, bank credit policies, bank condition, local economic 

conditions and bank regulation. The degree of randomness in loan amounts will depend on these 

demand- and supply-side factors. The influence of these factors on loan amounts might also vary across 

loan categories. For this reason, our second hypothesis is that the degree of randomness in loan 

amounts and related financial variables—loan charge-offs, recoveries and nonperforming loans—can 

vary across loan categories for reasons unrelated to fraud. Specifically, we hypothesize that certain 

categories of loans reflect an orderly course that is non-fraudulent while other categories of loans 

reflect random processes from a digit perspective. Two potential sources of non-fraudulent, non-

random digits in bank financial statements are retail pricing and negotiated prices.    

 

Retail Pricing  

To understand the “physiological price barriers” described by Durtschi, Hillison and Pacini (2004), 

consider retail automobile prices. The manufacturer suggested retail price (MSRP) as of February 2017 

for a Jeep Cherokee was $23,595 and a Cadillac CT6 Sedan listed for $53,795; the authors found similar 

pricing for other models of automobiles. The MSRP is a starting point in a sales price negotiation, so why 

not set the MSRP at $23,600 for the Jeep and $53,800 for a Cadillac? A Northern Virginia Ford dealership 

listed the “easy price” of a Ford F150 truck as $18,999.  The “easy price” is a price one can lock in and is 

not a starting point for price negotiation; so why not round up to $19,000? Does a 0.005% difference in 

price really matter to consumers? Automobile dealers apparently think it does and appear to manage 

the digits in prices to the lowest digit “available” in the price. That is, the Ford F150 “easy price” of 

$18,999 suggests second digit management perhaps because the automobile features do not qualify it 

for first digit management that might move the price into the $20,000 price range. Similarly, the MSRP’s 
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of the Jeep Cherokee and Cadillac suggest the dealerships are also managing prices to the second digit 

since customers rarely pay more than MSRP.  

 

Asking prices for automobiles are just that, starting points for price negotiations. What are the 

implications of digit-managed asking prices on final sales prices? Automobile price negotiations are a not 

random process, rather both participants in the negotiation—automobile salesperson and customer—

seek to get the most favorable price from their perspectives. We hypothesize negotiations of sales 

prices that start with digit-managed asking prices can only lead to digit-managed final sales prices. 

 

The same retail pricing phenomenon is seen in the list prices for residential properties. A random 

selection of residential home listing prices in Northern Virginia as of February 2017—$1,599,000; 

$899,000; $449,900; and $729,000—suggests realtors, like automobile dealerships, are managing listing 

prices at the second digit. As was the case for automobiles, mortgage loans will reflect not only list 

prices but final negotiated prices. We believe our previous conclusion about the cost of automobiles also 

applies to the cost of residential housing, i.e., it is a digit-managed number. 

4.1.2. Benford Law Second Order Test 

The existence of non-fraudulent, orderly courses in data from bank financial statements contributes to 

type 1 error in the application of the Law of Anomalous Number to fraud detection. In our empirical 

approach we control for this possibility by testing for fraud across different segments of the loan 

portfolio, as well as areas of the balance sheet and income statement we believe are not driven by non-

fraudulent, digit-managed processes. We also apply a recently developed second-order test of Benford’s 

Law that greatly reduces the likelihood of type 1 error, which we describe next.    

 

Nigrini and Miller (2009) introduce a second-order test of Benford’s Law that greatly reduces the large 

type 1 error rate associated with standard first-order digit tests of Benford’s Law. Miller and Nigrini 

(2008) provide mathematical analysis of the differences between adjacent ordered random numbers 

that follow Benford’s Law and show the digits of these differences “approximately” follow Benford’s 

Law. Nigrini and Miller (2009) provide empirical examples that show that an important advantage of 

using the differences of order-ranked random numbers for Benford digit analysis is that the differences 

in digits tend to follow Benford’s Law for most statistical distributions of numbers, including many that 

do not follow Benford’s Law, e.g., normal and uniform distributions. Nigrini and Miller (2009) conclude 
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that one can expect Benford’s Law to “almost” apply to most random number data distributions or 

mixture of distributions, although the usual caveats about numbers altered by human intervention still 

apply. Nigrini and Miller (2009) provide empirical case studies of the second order test, applying the test 

to a corporation’s accounts payable data, corporate journal entry data, franchise restaurant data on 

food sales and cost data (cost done separately) for approximately 5,000 restaurants, and tests of annual 

food costs-to-sales ratios by restaurant.  

 

Since the second order tests are conducted on difference values that “almost” follow Benford’s Law for 

all digits and two-digit combinations, there will be small differences between the Benford expected digit 

frequencies the frequencies one observes even when the underlying data are truly random. Nigrini and 

Miller (2009) therefore suggest that one should apply statistical tests of expected and observed digit 

frequencies, such as Chi Square tests, with caution since statistical tests may tend to reject the null 

hypothesis that the data follow Benford’s Law due to the inexact following of Benford digit frequencies. 

Nigrini and Miller (2009) suggest one can supplement statistical tests of digit frequencies departure 

from the Benford’s distribution with graphical analysis of observed digit frequencies and simple 

measures of divergence in distributions, such as the mean absolute deviation between expected and 

observed digit frequencies. We apply the second order Benford test in section 6.      

5. Data  

Our measure of whether there was insider abuse or fraudulent activity in a failed bank is compiled from 

three sources. The first source is the FDIC Board of Directors failing bank cases (FBC).  Before a bank is 

closed by the state or national bank chartering authority, the FDIC Division of Resolutions and 

Receiverships prepares a failing bank case to request the authority to choose the least costly method for 

resolving the bank failure from the FDIC Board of Directors.  The failing bank case states the reasons why 

the bank should be closed and a preliminary, model-based estimate of the cost of the failure to the FDIC 

Deposit Insurance Fund (DIF). In many cases the least costly resolution method is not known at the time 

the failing bank board case is prepared. To utilize the FBC for this paper, the FBC for each failed bank 

was reviewed by three FDIC staff that made independent judgments on whether insider abuse and/or 

fraud played a role in the bank’s failure.  For each failed bank, a final decision was made on whether 

insider abuse and/or fraud was present if at least two staff agreed on that finding. This process served as 

a control on the potential subjectivity in fraud assessments.   
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The restitution orders are also used to identify banks where insider abuse or fraudulent activities were 

present.  When fraud is detected, the FDIC issues a restitution order to the perpetrator with a fine.  

Issuing a restitution order can be a punitive action or a corrective action since a restitution order can be 

issued before, during, or after the bank failure.  Banks with restitution ordered amounts of more than 25 

percent of the estimated resolution cost are defined as insider abuse and/or fraud present. To ensure 

the restitution order amounts are material we also required resolution costs to be at least 5 percent of 

the failed-bank’s assets.   

 

Our third source of fraud information is from FDIC bond claims.  A bank with bond insurance is protected 

from insider abuse and fraud up to the amount of the policy.  A bank can file a claim on its bond 

insurance when insider abuse and/or fraud cause a loss.  In its role as failed-bank receiver the FDIC can 

file a claim on the bond insurance when it discovers insider abuse and/or fraud while resolving the bank 

failure.  A bank is defined as an insider abuse and/or fraud failure if the FDIC filed a bond insurance 

claim.  Information on fraud claims made by the bank is not used to define fraud failures because we do 

not have information on bond claims made by the bank.    

 

Table 2 presents the number of failed banks where insider abuse and/or fraudulent activities were 

identified in each data source for bank failing between 1989 and 2015 period.  Each data source 

identified a similar number of instances of insider abuse and fraudulent activities and there is significant 

overlap in these measures.   

 

Table 2. Insider Abuse and Fraud among U.S. Failed Banks: 1989–2015 

FDIC Failing Bank Board Case 227 

Bond Claims 205 

Restitution Orders (> 25% of 
resolution costs) 

215 

Net Number of Insider Abuse 
and/or Fraud Failures 

457 

Number of Failed Banks 1,257 

 

Table 3 presents a list of the types of insider abuse and/or internal fraud activities documented in failing 

bank cases. It is possible that more than one type of insider abuse is observed at a bank. We 

acknowledge that specific activities used to carry out insider abuse and internal bank fraud will likely 

change over time.   
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Table 3. Types of Insider Abuse or Fraudulent Activity, Post 2006 

(Identified in FDIC Failing Bank Board Cases) 

Types of Insider Abuse or Fraudulent Activity Frequency 

Alteration of financial statements / manipulation of records / 
concealing information from BoD or regulator / 
inflated appraisals / inflated financial statements 

20 

Loans to insiders / Violation of Reg O 9 

Transactions with affiliates (BHC, mortgage affiliate, etc.) / 
Violation of Reg W Section 23A 

4 

Self-dealing, e.g. excessive compensation, nepotism 8 

Embezzlement 1 

Fictitious loans or generating loans for inappropriate usage or forgery 
on loan documentation 

11 

Inappropriate transactions such as check-kiting, money-laundering, 
withdrawal of funds from customer accounts 

7 

Bank’s inappropriate transaction with a firm affiliated with a bank 
owner, officer, director, or employee 

2 

 All Other 6 

Total 68 

 

We use banks’ income statement and balance sheet data reported quarterly to their primary federal 

regulator (aka, Call Reports) to detect fraud. The following financial ratios are used to measure a bank’s 

financial condition in the fraud failure model.  

 Equity is a ratio of equity capital to total assets which measures the shareholders’ ownership of the 

bank.   

 Bank’s liquidity is measured by Liquid assets ratio.  Liquid assets ratio is a sum of securities and 

federal funds sold divided by total assets.  Nonperforming loans ratio is the sum of past due loans 

90+ days and nonaccruals divided by total assets and measure a bank’s asset quality.    

 Income earned but not collected ratio is a bank’s interest earned or accrued on earning assets that 

has not yet been collected to total assets.  This includes accrued interest receivable on loans, leases, 

debt securities, and other interest-bearing assets.  

 One-year asset growth rate is a change in bank’s merger-adjusted asset size from one year ago. 

 Investments in a bank’s subsidiaries are a bank’s investments in subsidiaries, associated companies, 

joint ventures, and partnerships where the bank exercises significant influence.   

 Earnings is a ratio of income before taxes to total assets and measures a bank’s profitability.  It is not 

clear whether reported earnings of a bank close to failing with fraudulent activities would differ 

from that of those without fraud.  Although actual earnings of a bank with fraudulent activities may 

be lower, it might hide its true condition by reporting higher earnings.   
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The financial ratios control for differences in bank performance and evidence of insider abuse and/or 

fraud.  Table 4 presents the mean and median financial ratios of fraud and non-fraud banks two years 

prior to failure.  Among failures, banks with insider abuse and/or fraud have a higher average loss rate 

compared to all other failed banks.  For instance, the mean loss rate for bank with insider abuse and/or 

fraud is 23.9% compared to 20.2% for all other failed banks.   

On average, banks with insider abuse and/or fraud (hereafter, fraud banks) reported better financial 

condition and performance, e.g., higher equity and lower nonperforming loans than other failed banks 

(hereafter, non-fraud banks).   Two years prior to failure, both fraud and non-fraud banks have negative 

earnings but fraud banks lose less money, on average.  Overall, fraud banks report better financial 

condition than do non-fraud banks two years prior to failure. At the same time, fraud banks also display 

greater risk-taking with higher asset growth.   

 

Table 4. Descriptive Statistics of Failed Institutions 2 Years Prior to Failure 

 Insider abuse 
and/or fraud 
not detected by 
regulators 

Insider abuse 
and/or fraud 
detected by 
regulators 

Insider abuse and/or 
fraud not detected 
by regulators  

Insider abuse 
and/or fraud 
detected by 
regulators  

 MEAN MEAN MEDIAN MEDIAN 

Loss rate1 20.17 23.91*** 19.01 21.51 

Equity 7.24 8.35*** 6.75 7.94 

Nonperforming 
loans 

3.96 3.05*** 3.25 1.89 

Income earned 
but not 
collected 

0.80 0.77 0.68 0.61 

One year asset 
growth 

8.05 11.49** 1.99 7.22 

Liquid assets 26.12 21.40*** 23.45 19.09 

Investment in 
subsidiaries 

0.05 0.03 0.00 0.00 

Earnings -1.41 -0.50*** -0.96 0.32 

No. of 
observations 758 451 758 451 
1Loss rate is a ratio of cost of a bank resolution to total assets as of quarter before failure.   
***Indicate that the mean value for banks with insider abuse/fraud present differs from banks without 
insider abuse/fraud with statistical significance at 1 percent.  
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6. Model Calibration and Results  

We next present the results for alternative fraud-detection approaches—Benford digit analysis, logistic 

regression and neural network analysis—followed by a discussion of how these various models might be 

used in a fraud-detection framework.  

6.1. Law of Anomalous Numbers  

Following the conclusions of section 4.1.2 we conduct second order Benford digit tests of bank Call 

Reports. Based on Nigrini and Miller (2009) we feel it is appropriate to apply the second order test to 

financial data from multiple balance-sheet and income statement entries for a bank over time. 

Specifically, we use eight consecutive calendar quarters of financial data for certain areas of bank 

financial reports that previous research suggests might be manipulated by fraudulent banks—loans past 

due 30-89 days, loans past due 90 days or more, nonaccrual loans and gross loan charge-offs for six 

categories of loans—1-4 family residential mortgages, loans for multifamily properties, loans for 

nonfarm, nonresidential  properties, loans for real estate construction and development, consumer 

loans and commercial and industrial loans. We conduct the second order tests on banks individually and 

group our results based on bank status in terms of whether regulators detected material insider abuse 

and/or internal fraud by bank employees or not.  To that end we have three groups of banks: 1) failed 

banks where insider abuse and/or fraud was detected by regulators, 2) failed banks where no insider 

abuse and/or fraud was detected by regulators, and 3) non-failed banks where no insider abuse and/or 

fraud was detected by regulators. For the non-failed bank group, we use a random sample of 300 banks 

for the second order tests.   

 

First Digit Tests 

We chose to apply the second order test to the first digit frequencies (1 through 9) since the data 

requirements for a first digit test are much lower than for a first-two digit test where there are 89 

possible digit combinations. To ensure there are sufficient data to observe all nine first digits we  

require there be at least 40 observations on some portion of the previously discussed financial variables 

(bank variable-quarter observations) to compute banks first digit frequencies and we all require that 

each of the nine first digits be observed at least once. This later requirement is intended to give 

acceptance of the null hypothesis that the digits follow the Benford distribution the greatest chance of 

being accepted, thereby reducing type 1 error. We focus on type 1 error because the burden on 

regulators of conducting a follow-up investigation for potential bank fraud is likely to be high. Finally, 
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Nigrini and Miller (2009) point out that when combining different datasets in a second order test, all the 

variables should span the same relative range in values, else differencing ranked ordered variables will 

not result in numbers that follow the Benford distribution. For this reason we chose the loan 

subcategories discussed previously and did not mix together variables whose ranges in values are not 

likely to overlap significantly, e.g., total assets and consumer loan charge-offs.  

 

The intent of the fraud detection model is to be able to detect fraud well before bank failure; therefore 

we used eight quarters of financial data over the period one-to-two years before failure for failed banks 

and a contemporaneous period for the samples of non-failed banks. To evaluate the divergence 

between expected and observed digit frequencies we use two second order test statistics—chi square 

(CHI) and mean absolute deviation (MAD). Equation 4 defines the chi-square statistic as the sum of the 

squared differences between observed and expected digit frequencies for bank j, divided by the 

expected digit frequencies for each digit, k. We use the 99 percent confidence level for rejecting the null 

hypothesis that the digits follow the Benford first digit distribution. 

𝐶ℎ𝑖 𝑆𝑞𝑢𝑎𝑟𝑒𝑗 =  ∑ (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑗,𝑘 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑗,𝑘  )
2

/𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑗,𝑘
9
𝑘=1                                          (4) 

The mean absolute deviation for bank j is defined in equation 5 where all terms are as defined 

previously in equation 4. 

𝑀𝐴𝐷𝑗 =  ∑ (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑗,𝑘 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑗,𝑘  )/99
𝑘=1                                                         (5) 

We conduct second order tests using data from the two most recent U.S. banking crises—late 1980s–

early 1990s and 2007–2009, and use overlapping two-year periods around each crisis period to test for 

model robustness.  Tables 5 and 6 present the results of the second order Benford tests.   

The data requirements of the second order Benford test and available observations on fraud and non-

fraud related failures reduce the sample of banks to which we can apply the second order test. Thus not 

all fraud-related failures are included in tables 5 and 6.    
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Table 5. Second Order Benford Tests: Late 1980s–Early 1990s Banking Crisis 

Benford Second Order Tests 

Bank 
Group 

 
Financial Data 

Period 
# Banks 

Screened 

# Banks w/ 
Benford 
Rejected 

Chi-Square 
test (p-value 

1%) 

# Banks w/ 
Chi-Square > 
30 and Mean 

Absolute 
Deviation > 4 

Failed 
Banks 

Insider Abuse 
and/or Fraud 
Detected by 
Regulators 

1988–1989 28 5 (18%) 1 (4%) 

1987–1988 25 4 (16%) 0 (0%) 

1986–1987 23 4 (17%) 1 (4%) 

Insider Abuse 
and/or Fraud 
Not Detected 
by Regulators 

1988–1989 126 15 (12%) 3 (2%) 

1987–1988 107 24 (22%) 6 (6%) 

1986–1987 126 15 (12%) 3 (2%) 

Non-
failed 
Banks 

(Random 
Sample) 

Insider Abuse 
and/or Fraud 

Not  
Detected  by 
Regulators 

1988–1989 67 13 (19%) 3 (4%) 

1987–1988 52 7 (13%) 1 (2%) 

1986–1987 71 15 (21%) 4 (6%) 

 

Table 6. Second Order Benford Tests: 2007–2009 Banking Crisis 

Benford Second Order Tests 

Bank 
Group 

 
Financial Data 

Period 
# Banks 

Screened 

# Banks w/ 
Benford 

Rejected Chi-
Square test 

(p-value 1%) 

# Banks w/ 
Chi-Square > 

=30 and Mean 
Absolute 

Deviation >= 4 

Failed 
Banks 

Insider 
Abuse 
and/or  
Fraud 

Detected 
by 

Regulators 

2008–2009 73 6 (8%) 1 (1%) 

2007–2008 97 12 (12%) 1 (1%) 

2006–2007 80 6 (8%) 0 (0%) 

Insider 
Abuse 

2008–2009 60 10 (17%) 5 (8%) 
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and/or 
Fraud Not 
Detected  

by 
Regulators 

2007–2008 61 9 (15%) 3 (5%) 

2006–2007 42 2 (5%) 2 (5%) 

Non-
failed 
Banks 

(Random 
Sample) 

Insider 
Abuse 
and/or 

Fraud Not  
Detected  

by 
Regulators 

2008–2009 155 8 (5%) 2 (1%) 

2007–2008 127 7 (6%) 0 (0%) 

2006–2007 118 9 (8%) 0 (0%) 

 

Tables 5 and 6 show that a typical statistical threshold for rejecting the null hypothesis that the data 

follow the first digit Benford distribution, i.e., 1 percent significance level, results in relatively high 

rejection rates. If we were to apply the second order test to all banks, a 1 percent significance level 

would likely lead to over 8 percent of all banks or over 400 banks failing the test and requiring follow-up 

analysis by regulators. Nigrini and Miller (2009) suggest the “almost” Benford characteristic of first 

differences in ranked data contributes to false positives in the second order test. To limit the burden of 

unnecessary follow-up analysis by regulators we consider a simple threshold test based on both chi 

square statistics and MAD; if a bank’s chi square is 30 or more and MAD is 4 or more then the bank fails 

the second order test for random numbers. This latter, simpler test is much more restrictive and 

generally results in 1 percent of banks or less (40 or less banks) failing the second order test.   

As we discussed previously, our fraud suspicion flag includes activities that may not have resulted in 

banks altering their financial statements. We therefore investigated banks that failed the chi-square test 

using a p-value of 1 percent, as well as banks that failed the chi square and MAD thresholds test. Among 

all screened banks with suspected fraud in tables 5 and 6, 37 banks failed the chi-square test using a p-

value of 1 percent and 33 of those banks had significant restitution orders and/or FDIC bond claims.  

Among all banks with suspected fraud in tables 5 and 6 that failed the chi-square and MAD thresholds 

test, we find that in all cases the banks had indications of material internal fraud due to FDIC bond 

claims, restitution orders and/or news reports of deliberate financial misstatements. We believe 

material restitution orders and bond claims are tangible proof of internal bank fraud.  Failing bank case 

discussions of suspected internal bank fraud are not tangible proof of fraud.  

As a check on the second order test accuracy we compared the first digit frequencies of banks with 

insider abuse and/or fraud against those where no fraud was suspected graphically.  While Nigrini and 
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Miller (2009) recommend one use graphical analysis to confirm non-Benford behavior, visual inspection 

may not be practical for large samples of banks regulators wish to screen.  Figures 3 and 4 show the 

expected and observed second order test digit frequencies for a failed bank where insider abuse and/or 

fraud was detected by regulators, and statistical test statistics support that finding, versus those of a 

non-failed bank. The graphical analysis agrees our simple threshold second order test base in a chi 

square of 30 or more and MAD of 4 or more. Figures 3 and 4 are representative of those for the 

population of banks. 

Figure 3. 

 

Figure 4. 
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Combined First and Second Digit Tests 

Another approach to reducing type 1 error is to combine tests of first and second digit frequencies. The 

tests of the distribution of the 10 possible second digits (i.e., 0 through 9) can be made using the same 

approach as was used to test first digit frequencies. By combining first and second digit tests we hope to 

increase the accuracy of fraud detection while reducing the potential number of banks regulators would 

need to analyze in subsequent screening processes.  

 

Tables 7 and 8 presents results for the combined first and second digit tests for the late 1980s–early 

1990s banking crisis and 2007–2009 global financial crisis period, respectfully, using digits from the 

second order Benford test. To enhance the comparability of results we only include those banks where 

both first and second digit chi square tests of digit frequencies could be estimated.  Tables 7 and 8 show 

that banks fail the second digit test at much higher rates than for the first digit test, suggesting that 

banks manage the second digit more often than the first digit. Further, our results show that combining 

first and second digit tests reduces the pool of potential fraud candidates to a manageable number of 

banks.  

We investigated the role that insider abuse and fraud played in the failure of the seven banks in table 8 

where regulators detected insider abuse and/or fraud that did not pass both the first and second digit 

tests.  For these seven banks, five banks had bond claims and six banks had substantive restitution 

orders.  We also conducted an internet search for news reports on these seven failed banks and found 

five had news reports of substantive insider fraud and/or charges of insider fraud.    

Table 7. Second Order Benford Tests of First and Second Digits: Late 1980s–early 1990s Banking Crisis 

Benford Second Order Tests 

Bank 
Group 

 
Financial 

Data Period 
# Banks 

Screened 

# Banks Failing 
1st Digit Chi- 
Square Test 
(p-value 1%) 

# Banks Failing 
2st Digit Chi- 
Square Test 
(p-value 1%) 

# Banks Failing 
1st and 2nd Digit 
Chi-Square Test 

(p-value 1%) 

Failed 
Banks 

Insider 
Abuse 
and/or 
Fraud 

Detected  
by 

Regulators 

1988–1989 16 1 (6%) 6 (38%) 0 (0%) 

1987–1988 13 0 (0%) 4 (31%) 0 (0%) 

1986–1987 7 2 (29%) 2 (29%) 0 (0%) 

Insider 
Abuse 

1988–1989 33 5 (15%) 15 (45%) 2 (6%) 
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and/or 
Fraud Not 
Detected  

by 
Regulators 

1987–1988 49 12 (24%) 18 (37%) 6 (12%) 

1986–1987 62 7 (12%) 27 (43%) 6 (10%) 

Non-
failed 
Banks 

(Random 
Sample) 

Insider 
Abuse 
and/or 

Fraud Not  
Detected  

by 
Regulators 

1988–1989 33 7 (21%) 17 (52%) 4 (12%) 

1987–1988 20 3 (15%) 12 (60%) 2 (10%) 

1986–1987 22 5 (23%) 12 (55%) 1 (5%) 

 

Table 8. Second Order Benford Tests of First and Second Digits: 2007–2009 Banking Crisis 

Benford Second Order Tests 

Bank 
Group 

 
Financial 

Data Period 
# Banks 

Screened 

# Banks Failing 
1st Digit Chi- 
Square Test 
(p-value 1%) 

# Banks Failing 
2st Digit Chi- 
Square Test 
(p-value 1%) 

# Banks Failing 
1st and 2nd Digit 
Chi-Square Test 

(p-value 1%) 

Failed 
Banks 

Insider 
Abuse 
and/or 
Fraud 

Detected  
by 

Regulators 

2008–2009 60 6 (10%) 17 (28%) 2 (3%)  

2007–2008 129 13 (10%) 3 (2%) 2 (2%) 

2006–2007 62 6 (10%) 20 (32%) 3 (5%) 

Insider 
Abuse 
and/or 

Fraud Not 
Detected  

by 
Regulators 

2008–2009 46 7 (15%) 14 (30%) 4 (9%) 

2007–2008 38 7 (18%) 11 (29%) 2 (5%) 

2006–2007 24 0 (0%) 13 (54%) 0 (0%) 

Non-
failed 
Banks 

(Random 
Sample) 

Insider 
Abuse 
and/or 

Fraud Not  
Detected  

by 
Regulators 

2008–2009 84 2 (2%) 29 (34%) 1 (1%) 

2007–2008 73 2 (3%) 31 (42%) 0 (0%) 

2006–2007 53 6 (11%) 18 (34%) 3 (6%) 
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6.2. Logit Regression  

In this section, we estimate a parametric model to predict bank failures where insider abuse and/or 

fraud was detected by regulators. We denote bank failures where insider abuse and/or fraud were 

detected by regulators by y=1 and all other failures by y=0 and model the probability of a insider abuse 

and fraud-related bank failure as a function of bank’s balance sheet and income statement variables 

previously discussed in section 5. 

iii xy                                                 (6) 

In equation 6,  is a vector of regression coefficients, Xi, is a vector of variables measuring bank 

characteristics and μi is the regression error term. The probability of bank failure is modelled by bi-

variate logistic regression. 

Regression Results 

Table 9 reports the results of the logit models using banks’ last financial ratios before failure. Columns 

(1), (2), and (3) of table 8 report the estimates of the models using the full (1989-2015), early (1989-

2004), and the recent (2007-2015) periods, respectively. Table 9 shows that banks with insider abuse 

and/or fraud detected by regulators reported higher equity on their last call reports compared to failing 

banks without insider abuse and/or fraud. Fraud failures also tended to report lower earnings compared 

to non-fraud failures.  In the full and early periods, fraud failures are characterized by higher asset 

growth and lower liquid assets.  In contrast, the fraud failures in recent periods reported higher income 

earned but not collected. According to McDill (2004), a high level of income earned but not collected is 

an indication that loans have gone bad but have not been written off. 

 

Table 9. Logistic Regression of Fraud vs. Non-fraud failures using Last Financial Ratios before Failure 

 (1) (2) (3) 

 Full (1989-2015) Early (1989-2004) Recent (2007-2015) 

Intercept -0.859*** -0.774** -1.524*** 

Equity  0.118***    0.090*** 0.077** 

Nonperforming loans         0.017*          0.003           0.012 

Income earned not collected         0.036          0.097  1.674*** 

One year asset growth 0.017***    0.020***           0.005 

Liquid assets       -0.016***   -0.021***         -0.0002 

Investment in subsidiary        0.187          0.219          0.545 
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Income before taxes       -0.113***  -0.099***        -0.092*** 

    

Likelihood ratio 106.42*** 50.94*** 35.84*** 

Number of observations 1,236 718 518 

*** Indicates statistical significance at 1%.  ** indicates statistical significance at 5%.  * indicates 
statistical significance at 10%. 
 

Table 10 reports the estimation results using data four quarters prior to failure.  For full, early, and 

recent periods, banks with insider abuse and/or fraud reported higher equity.  In full and early periods, 

banks with insider abuse and/or fraud grew more rapidly. Due to rapid growth, the banks may outgrow 

their rules, procedures, or internal control systems and make it easier for an insider abuse.   

Moreover, banks with insider abuse and/or fraud had lower liquid assets ratio and invested more in the 

bank’s subsidiaries in full and early periods.  In recent periods, failed banks with insider abuse and/or 

fraud had higher income earned but not collected. Banks with insider abuse and/or fraud reported 

higher earnings one year before failure.  This differs from the results in Table 9 where banks with insider 

abuse and/or fraud reported lower earnings on their last call reports.   

 

Table 10. Logistic Regression of Fraud vs. Non-fraud failures using Financial Ratios 4 Quarters before 

Failure 

 (1) (2) (3) 

 Full (1989-2015) Early (1989-2004) Recent (2007-2015) 

Intercept -0.136 0.023 -1.100** 

Equity        0.071***     0.034**  0.074** 

Nonperforming loans 0.006               -0.027              0.006 

Income earned not collected 0.010                0.094   1.388*** 

One year asset growth     0.007**       0.014***             -0.003 

Liquid assets     -0.027***     -0.034***              0.0002 

Investment in subsidiary  0.369*    0.423**              0.594 

Income before taxes     0.064***                0.051              0.056 

    

Likelihood ratio 96.25*** 60.96***             30.19*** 

Number of observations 1,228 710 518 

*** Indicates statistical significance at 1%.  ** indicates statistical significance at 5%.  * indicates 
statistical significance at 10%. 
 

Table 11 reports the estimation results using data eight quarters prior to failure. Banks with insider 

abuse and/or fraud reported lower nonperforming loan ratios than did banks without insider abuse 
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and/or fraud for the full and early periods. While the estimated coefficient is negative, it is not 

statistically significant for the recent period. This finding is consistent with banks with insider abuse 

and/or fraud failing to recognize deterioration in the bank assets (Green and Reinstein (2004)). 

 

Similarly, fraud failures reported lower liquid assets but the estimated coefficient is significant only for 

the full and early periods. Higher reported earnings are also observed at fraud failures but the estimated 

coefficient is statistically significant only for the full sample. For the recent period, income earned but 

not collected to total assets ratio is positive and statistically significant.   

 

Table 11. Logistic Regression of Fraud vs. Non-fraud failures using Financial Ratios 8 Quarters before 

Failure 

 (1) (2) (3) 

 Full (1989-2015) Early (1989-2004) Recent (2007-2015) 

Variable Fraud failure Fraud failure Fraud failure 

Intercept 0.168 -0.065 -0.486 

Equity   0.028*  0.025 -0.015 

Nonperforming loans    -0.060**       -0.098*** -0.017 

Income earned not collected               -0.029 0.095         1.307*** 

One year asset growth               -0.002 0.001 -0.003 

Liquid assets       -0.026***       -0.028*** -0.001 

Investment in subsidiary               -0.250               -0.589  0.600 

Income before taxes     0.059**                0.036  0.054 

    

Likelihood ratio 65.13*** 36.36***    23.71*** 

N 1,203 689 514 

*** Indicates statistical significance at 1%.  ** indicates statistical significance at 5%.  * indicates 
statistical significance at 10%. 
 

The findings that banks reporting higher equity, lower nonperforming loans, and higher earnings are 

consistent with banks with insider abuse and/or fraud reporting numbers that are more favorable than 

banks without insider abuse and/or fraud. Possibly, these findings are a reflection of banks with insider 

abuse and/or fraud reporting fictitious accounting numbers at higher frequency.  The exception is liquid 

assets which are negatively related to fraud failures.  Plausibly, it is more difficult to report false level of 

liquid assets.  Loan quality is not readily observable which makes it easier for the bank to hide problems.  

In contrast, it is more difficult to hide in treasury or other liquid securities.   
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6.3. Neural Networks  

Our third approach to developing an off-site fraud detection model was to us a neural network pattern 

recognition algorithm supplied by Matlab. Published research has found that neural network analysis 

can successfully detect the types of outliers in data that insider abuse and fraud might produce in bank 

financial statements. We trained neural network models using the same financial data as we used in the 

Benford digit analysis and logit models of fraud-related bank failures.  We also trained neural network 

models using data from the same two pervious banking crises as we used for the Benford and logit 

models.  The majority of our results showed the neural network model trained very accurately on failed 

banks where fraud was not detected by bank regulators, but did not accurately detect failed banks 

where insider abuse and/or fraud was detected by bank regulators.  In our attempts to train the neural 

network model on the population of banks, the results were similar, with the model being unable to 

detect banks with insider abuse and/or fraud. Given the lack of positive results we will not present 

results here for brevity. We will continue to explore the potential for machine learning algorithms to 

detect bank insider abuse and fraud, however.       

7. Conclusions  

Our results suggest that material insider abuse and/or fraud at banks is detectable using Benford digit 

analysis of bank financial data for a period one-to-four years prior to failure. Specifically, we use a 

recently developed second order Benford digit test to identify those banks whose financial statements 

suggest tampering and purposeful misstatement. Unfortunately, we are unable to develop an accurate 

neural network model for fraud prediction. Finally, regression analysis of the determinants of failure 

among banks with insider abuse and/or fraud compared to other types of failed banks are in general 

agreement with the literature on fraud in banking, which finds banks with insider abuse and fraud 

present will overstate income and asset values, under-report losses and consequently overstate 

capitalization.    
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