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1 Introduction

A question remains whether Bitcoin’s limited usage arises due to its infancy or because

of its underlying economic structure. This paper answers that question by demonstrat-

ing that limited adoption constitutes an endogenous characteristic of not only Bitcoin

but also Proof-of-Work (PoW) payments blockchains more generally. We demonstrate

that the economics of PoW payments blockchains make limited adoption an inescapable

equilibrium outcome. Our critique does not apply to other blockchains such as smart

contract platforms and permissioned platforms. In fact, our analysis explicitly highlights

that permissioned blockchains may overcome limited adoption. Recently, that insight

has become particularly salient with Facebook’s announcement of the Libra blockchain,

a permissioned platform with the explicit goal of widespread adoption. Nonetheless,

our analysis does not explicitly endorse any particular project; rather, our work high-

lights the need for research on alternatives to Bitcoin in the nascent field of blockchain

economics.

PoW dates back to Dwork and Naor (1992) and later gained mainstream atten-

tion when Nakamoto (2008) popularized the concept by employing it to allegedly in-

duce good validator behavior within a permissionless blockchain setting.1,2 Nakamoto

(2008) envisioned a decentralized network that admits free entry and perfect compe-

tition among validators. To achieve that vision while creating appropriate validator

incentives, Nakamoto (2008) specified that agents must solve a verifiable puzzle to up-

date the blockchain.3 Nakamoto (2008) specified the puzzle difficulty as a parameter so

that the block arrival rate (i.e., rate of blockchain updating) may be targeted. The mo-

tivation for this targeting feature arises from the premise that blockchain updates occur-

1Validators on a Proof-of-Work blockchain are called miners.
2A permissionless blockchain constitutes a blockchain that admits free entry with respect to the

validator network.
3The interested reader may consult Biais, Bisière, Bouvard, and Casamatta (2019) for further ref-

erence.
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ring faster than the network delay undermines validators agreeing on ledger contents.4

Narayanan, Bonneau, Felten, Miller, and Goldfeder (2016) argue that the block rate

“should be [targeted as] a fixed amount” because “blocks [coming] very close together

[induces] a lot of inefficiency.” The block arrival rate targeting, however, artificially

constrains ledger space. We demonstrate that this artificial supply constraint interacts

with network delay and PoW’s permissionless nature to make limited adoption endemic

to PoW payments blockchains.

Due to PoW’s supply constraint, an increase in transaction demand endogenously

generates an increase in fees. That fee increase in turn induces validators to enter

the PoW network. The PoW network expansion then exacerbates network delay and

protracts the validator agreement process. For users, this delay amounts to increased

payment confirmation times which drives users away from the blockchain platform to-

wards traditional payment systems. In equilibrium, the blockchain maintains only users

relatively insensitive to payment confirmation delays. Thus, our analysis demonstrates

that PoW payments blockchains cannot simultaneously sustain large volumes and a non-

negligible payments market share - we term this problem the limited adoption problem.

To overcome the limited adoption problem, we consider dynamic adjustment of

PoW’s block rate. That putative solution corresponds economically to expanding supply.

However, it falls short as a remedy due to the need for validators to obtain consensus. If

the block rate fails to keep pace with transaction demand, then demand outpaces supply

and prohibitive wait times drive users from the blockchain. Alternatively, if the block

rate keeps pace with transaction demand, then supply meets demand but the rapid

block rate leaves validators insufficient time to communicate across the network thereby

protracting the validator agreement process. The protracted validator agreement pro-

cess elongates payment confirmation times and drives users away from the blockchain.

4Network delay references the time required for information to travel across the network. We provide
further detail within Section 2.
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Increasing block sizes yields similar results as increasing block-rates because network de-

lay increases approximately linearly in block sizes for non-trivial block sizes (see Decker

and Wattenhofer (2013)). Thus, dynamic supply fails to overcome the limited adoption

problem. This reasoning breaks down only if the PoW blockchain features a single val-

idator. A single validator network allows simultaneously for arbitrarily fast block rates

and an expedient validator agreement process.

The necessity of centralization to break PoW’s limited adoption problem motivates

us to consider permissioned blockchains. A permissioned blockchain offers a semi-

centralized setting with neither an artificial supply constraint nor free entry among

validators. We demonstrate that a permissioned blockchain induces lower payment con-

firmation times than a PoW blockchain and overcomes the limited adoption problem.

Nonetheless, we acknowledge that a permissioned blockchain may not dominate a PoW

blockchain because malicious validator behavior may arise in equilibrium for a permis-

sioned blockchain. We, therefore, turn to examining validator incentives for this class

of blockchains.

We begin by analyzing a standard majority rule consensus protocol. Such a protocol

creates a coordination game with multiple equilibria. All validators behave honestly in

one equilibrium and maliciously in another equilibrium. These results arise because a

validator gains from successfully attacking the blockchain but faces a reputation cost

from an unsuccessful attack. The majority-rule consensus protocol thus raises security

concerns for a permissioned blockchain.

To resolve the aforementioned concerns, we propose an alternative consensus proto-

col. That protocol weights votes by each validators’ stake in the cryptocurrency native

to the blockchain. Such a protocol aligns validator incentives in a way that precludes

malicious validator behavior. Validators internalize that prices negatively reflect the

probability that the blockchain incurs a successful attack. An attack equilibrium can-

not exist because validators respond optimally to a potential attack by acquiring a stake
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in the cryptocurrency sufficiently large to become marginal and thwart the attack.

A permissioned blockchain with a stake-based consensus protocol escapes the limited

adoption problem and induces honest validator behavior. This has important implica-

tions for the introduction of blockchain as a payment system. While PoW may not be

viable due to the limited adoption problem, a well-designed permissioned alternative

may be suitable for widespread adoption. Notably, Facebook recently announced plans

for a permissioned blockchain with the explicit goal of widespread adoption. While

we demonstrate that permissioned blockchains may overcome limited adoption, our re-

sults do not demonstrate that arbitrary implementations of permissioned blockchains

necessarily obtain widespread adoption.

This paper relates to a large literature that studies PoW economics and cryptoas-

sets. Eyal and Sirer (2014), Nayak, Kumar, Miller, and Shi (2015), Carlsten, Kalodner,

Weinberg, and Narayanan (2016), Cong, He, and Li (2018a), Alsabah and Capponi

(2019) and Biais et al. (2019) analyze PoW mining strategies. Huberman, Leshno, and

Moallemi (2019) and Easley, O’Hara, and Basu (2019) analyze transaction fees and wait

times for users under a PoW protocol. Foley, Karlsen, and Putnins (2019) examine the

extent to which cryptocurrencies facilitate illegal activities. Raskin, Saleh, and Yermack

(2019) analyze the relationship between private digital currencies and government policy.

Kroeger and Sarkar (2017), Biais, Bisière, Bouvard, Casamatta, and Menkveld (2018),

Liu and Tsyvinski (2018), Makarov and Schoar (2019), Pagnotta and Buraschi (2018),

Li, Shin, and Wang (2019b) and Shams (2019) study the determinants of cryptoasset

prices. Other notable works include Gandal and Halaburda (2016), Harvey (2016), Chiu

and Koeppl (2017), Abadi and Brunnermeier (2018), Griffin and Shams (2018), Jermann

(2018) and Chiu and Koeppl (2019).

This paper highlights an important shortcoming of PoW payments blockhains. In

doing so, our work adds to the literature that highlights PoW’s economic limitations.

Budish (2018) argues that the possibility of an attack limits Bitcoin’s economic size.
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Yermack (2015) documents exorbitant bitcoin price volatility. Pagnotta (2018) and

Saleh (2019b) theoretically demonstrate that PoW contributes to that price volatility;

Saleh (2019b) also demonstrates that PoW induces welfare losses.

This paper also contributes to a growing literature that considers alternatives to PoW

payments blockchains. We provide one of the first analyses of permissioned blockchains

and show that a properly designed consensus protocol yields desirable validator behav-

ior. Cao, Cong, and Yang (2018) and Chod, Trichakis, Tsoukalas, Aspegren, and Weber

(2018) predate our work and also study permissioned blockchains but for auditing and

supply chain purposes respectively. Cong, Li, and Wang (2018b), Sockin and Xiong

(2018), Tinn (2018), Cong and He (2019) and Cong, Li, and Wang (2019) depart from

the Bitcoin paradigm by examining a blockchain platform that possesses functionality

beyond payment processing. Falk and Tsoukalas (2018) provide a theoretical analysis

of blockchain-based token weighted voting platforms. Chod and Lyandres (2018), Lee,

Li, and Shin (2018), Li and Mann (2018), Malinova and Park (2018), Howell, Niessner,

and Yermack (2018), Catalini and Gans (2019) and Davydiuk, Gupta, and Rosen (2019)

study initial coin offerings. Basu, Easley, O’Hara, and Sirer (2019) propose an alterna-

tive fee setting mechanism to that employed by Bitcoin. Saleh (2019a) formally analyzes

Proof-of-Stake (PoS) and establishes that such a protocol induces consensus under cer-

tain conditions. Fanti, Kogan, and Viswanath (2019) provide a valuation framework for

PoS payments systems. Rosu and Saleh (2019) study the evolution of shares in a PoS

cryptocurrency.

Also notable, there exists a large literature within computer science that studies

security of various blockchain protocols. Prominent papers within that literature in-

clude Miller and LaViola (2014), Chen and Micali (2016), Kiayias, Russell, David, and

Oliynykov (2017) and Daian, Pass, and Shi (2019). Our paper differs from those works

in that we do not establish security of any protocol. Rather, we assume security of

PoW and establish limited adoption despite this generous assumption. Our paper also
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analyzes security of a permissioned blockchain protocol. However, our notion of security

equates with incentive compatibility of validators, whereas the computer science security

notion equates to robustness in the presence of an exogenously motivated attacker.

This paper proceeds as follows. Section 2 discusses relevant institutional details.

Section 3 presents the PoW model, defines a PoW Equilibrium and establishes both ex-

istence and uniqueness of such an equilibrium. Section 4 analyzes payment confirmation

times and formalizes the limited adoption problem. Section 5 discusses permissioned

blockchains and offers a stake-based consensus protocol as an alternative to PoW. Sec-

tion 6 concludes. All proofs appear in Appendix B.

2 Institutional Background

For a block to enter a PoW blockchain, that block must solve a puzzle. Hereafter, we

refer to that puzzle as the PoW puzzle and any block that solves the PoW puzzle as

a valid block. Being valid constitutes a necessary, but not a sufficient condition, for a

block to enter the blockchain. Block validity is not a sufficient condition due to PoW’s

permissionless nature which requires that any validator may propose a block. If multiple

validators propose valid blocks at the same height, then only one such block may enter

the blockchain, thereby precluding block validity as a sufficient condition for a block to

enter the blockchain.

Validators may propose valid blocks at the same height for various reasons. Biais

et al. (2019) consider such events arising from validator incentives. We abstract from

validator incentives and assume each validator follows the longest-chain rule described

by Nakamoto (2008). A key ingredient of our model is that, even with such a generous

security assumption, multiple blocks may be proposed at the same height due to network

delay. We show that network delay has grave economic implications that prevent PoW

payments blockchains, such as Bitcoin, from becoming widely adopted.
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Network delay refers to the time required for information to travel across the network.

The presence of network delay implies that validators may perceive different longest

chains at a given point in time. If Validator A proposes a valid block at a given height,

other validators may nonetheless continue searching for a valid block at that same height,

because news of Validator A’s valid block has not propagated through the entire network.

With a positive probability, some other validator, Validator B, may find a valid block

before receiving news regarding Validator A’s valid block. Then, Validators A and B

perceive different blockchains which we refer to as a fork.

The propensity of such forks arising thus depends on the extent of network de-

lay which in turn is a function of the structure of the validator network. Since PoW

blockchains are permissionless, such blockchains generally adopt a random network

topology in which case network delay is approximately a logarithmic function of the

number of nodes (see Chung and Lu (2002) and Riordan and Wormald (2010)). In our

analysis, we specify network delay in more general terms so that a logarithmic function

constitutes a special case. In practice, forks generated by network delay constitute the

majority of forks arising on the Bitcoin blockchain (see Decker and Wattenhofer (2013)),

yet the economics literature has largely ignored such forks. Although these forks arise

for non-economic reasons, our work highlights that they possess significant economic

implications in that they generate the limited adoption problem.

3 PoW Model

We model an infinite horizon economy that evolves in continuous time. Our model

consists of a validator network that stores the blockchain and a finite number of potential

blockchain users.
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3.1 Users

Our model involves finitely many users, i P t1, ..., Nu. Each user possesses only one

transaction. We model user preferences akin to Easley et al. (2019) and Huberman et al.

(2019). At t � 0, User i learns her type, ci � U r0, 1s. ci denotes the delay cost for User

i, which remains unknown to others.5 After learning her type, User i selects a fee level,

fi, that solves the problem in (1) below.

max
f¥0

R � ci � ErW pf, f�iq | cis � f (1)

W pf, f�iq represents the wait time for User i’s transaction to earn confirmation when

User i pays f as a fee, while the other users pay fee f�i. R represents the utility of User

i having her transaction processed. If max
f¥0

R � ci � ErW pf, f�iq | cis � f   0 then User

i opts to transact via traditional payment systems rather than on the blockchain.

3.2 Validators

Because PoW blockchains admit free entry among validators, we determine the num-

ber of validators, V , endogenously. Each potential validator must pay some cost β ¡ 0

to acquire validation technology and join the network. Each validating node represents

a single processor, and we assume that each processor possesses identical hashing power

so that each validator expects to earn an equal share of fees. We assume validators

possess risk-neutral preferences. Then, free entry yields Equation (2) with V being the

equilibrium number of validators.

V �
Er°

i

fis
β

(2)

For exposition, we assume that each block contains only one transaction.6 We fur-

5We model ci as independent of all else.
6Decker and Wattenhofer (2013) establishes that network delay increases linearly in block size for
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ther assume that no coinbase transactions exist so that validators receive compensation

exclusively through fees. Validators optimally service transactions in descending order

of fees.

3.3 Blockchain

Blocks arrive according to a compound Poisson process with rate Λ ¡ 0. We assume

that each arrival occurs at a new block height, but we allow that network delay may

yield multiple blocks at the same height. Multiple blocks at the same height constitute

a fork and correspond to disagreement regarding the blockchain’s content. A fork arises

if different validators solve the same PoW puzzle before communicating with each other.

Given an arrival at time t, a Poisson process with rate Λ produces at least one more

arrival within the next ∆ time units with probability 1� e�Λ∆. Accordingly, we assume

that an arrival corresponds to multiple blocks at a given height with probability 1 �
e�Λ∆pV q. ∆pV q denotes the delay for a network of size V . We impose ∆p1q � 0,

lim
VÑ8

∆pV q � 8, and ∆1pV q ¡ 0 for V ¡ 1.7,8

We assume that payments cannot be confirmed during a fork because, in such a case,

validators disagree regarding the ledger’s contents. Once a fork arises, we require a “k-

blocks” rule to resolve the fork. Specifically, we require k consecutive arrivals without

multiple blocks at the same height to return the blockchain to consensus.

non-trivial block sizes so that increasing block-rates and increasing block-sizes produce similar results.
We allow arbitrary block-rates, so our results hold approximately for arbitrary block sizes.

7We model network delay in such generality to capture various potential validator network structures.
Co-ordination may reduce network delay’s sensitivity to network size, but our results nonetheless hold
due to our general specification of ∆pV q.

8∆pV q lacks real-world meaning if V P r0, 1q. Nonetheless, we specify @V P r0, 1q : ∆pV q � 0 for
technical reasons. Our results do not depend upon this assumption.
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3.4 Equilibrium

Definition 3.1. PoW Equilibrium

A PoW Equilibrium is an entrant cut-off, c� P r0, 1s, a fee function, φ : r0, 1s ÞÑ R�, a

set of fee choices, tfiuNi�1, and a validator network size, V ¥ 0, given a number of users,

N ¥ 2, a blockchain utility, R ¡ 0, and a block arrival rate, Λ ¡ 0, such that:

(i) @i : φpciq solves the problem in (1) if ci ¤ c� and φpciq � 0 otherwise

(ii) @i : ci ¤ c� ô max
f¥0

R � ci � ErW pf, f�iq | cis � f ¥ 0

(iii) @i : fi � φpciq

(iv) W pf, f�iq �
°

j:f fj

Hj �Hi � Zi, Hj � exppΛq,ErZis � τpΛ, V q.

(v) βV � Er°
i

fis.

Definition 3.1 characterizes the equilibrium. Without further reference, we assume

that the blockchain’s stationary distribution characterizes its initial state. The interested

reader may consult Appendix A for the explicit stationary distribution and associated

technical details. Condition 3.1 (i) asserts that users select an optimal fee schedule.

Condition 3.1 (ii) states that a user transacts on the blockchain if and only if she

derives weakly higher utility from transacting on the blockchain over the traditional

payment systems. Condition 3.1 (iii) states that a user pays a fee only if she transacts

on the blockchain. Condition 3.1 (iv) characterizes wait times as decomposed into three

components; the wait for higher priority transactions,
°

j:f fj

Hj, for personal service,

Hi, and for fork resolution, Zi. Due to block arrival according to a compound Poisson

process, wait times for individual blocks are independently and identically distributed

following an exponential distribution with rate Λ. We let τpΛ, V q denote the expected

fork-resolution time and characterize this function explicitly in Appendix A. Condition
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3.1 (v) imposes no profits for validators in equilibrium because free entry characterizes

the validator network.

Proposition 3.1. Existence and Uniqueness of a PoW Equilibrium

There exists a PoW Equilibrium. There exists no other equilibrium for which φ con-

stitutes a strictly increasing and differentiable function on the interval p0, c�q. The

following conditions characterize the equilibrium:

(A) φpciq � pN � 1q c2i
2Λ

if ci ¤ c� and φpciq � 0 otherwise

(B) R   ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

ùñ R � c�ΨpΛ, V q � pc�q2pN�1q
2Λ

(C) R ¥ ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

ùñ c� � 1

(D) βV � pN � 1qN pc�q3

6Λ
.

Proposition 3.1 establishes existence and uniqueness of a PoW Equilibrium with

ΨpΛ, V q � 1
Λ
� τpΛ, V q denoting the expected wait time of the highest priority user.

Proposition 3.1 (A) characterizes the equilibrium fee function. Proposition 3.1 (B)

characterizes the entrant cut-off in the case that there exists a user indifferent between

using the blockchain and a traditional alternative. Proposition 3.1 (C) characterizes the

entrant cut-off in the case that all users weakly prefer transacting via the blockchain.

Proposition 3.1 (D) characterizes the equilibrium number of validators.

4 PoW Results

Having established existence and uniqueness of a PoW Equilibrium, we turn to an-

alyzing the properties of that equilibrium. Section 4.1 analyzes payment confirmation

times. Section 4.2 establishes the limited adoption problem.
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4.1 Payment Confirmation Times

We define Wi � ErW pfi, f�iq | cis as the expected confirmation time for User i if

she uses the blockchain. Equation (3) decomposes payment confirmation times into

three parts.9 pN � 1q pc��ciq
Λ

equals the expected service time for higher priority users.

1
Λ

equals the expected service time for User i. τpΛ, V q references the expected fork

resolution time.

Wi � pN � 1qpc
� � ciq

Λ
� 1

Λ
� τpΛ, V q (3)

Fork resolution time constitutes a feature distinct from a traditional setting. This

feature arises because blockchain payment confirmation requires agreement by all valida-

tors within the network. That agreement becomes harder to achieve when blocks arrive

quickly relative to the time needed for a given validator to communicate her ledger to

the network. Accordingly, disagreement arises more frequently as the network grows

or as the block rate rises so that increasing the block rate need not expedite confor-

mation times. In the absence of forks, confirmation times decrease as the block rate

rises. Nonetheless, in the presence of forks, as the block rate rises so too does the fork

frequency which counteracts the aforementioned effect.

Proposition 4.1. Payment Confirmation Lower Bound

Network delay bounds below all user payment confirmation times pi.e., @i : Wi ¥
τpΛ, V q ¥ ∆pV qq.

Proposition 4.1 establishes that PoW induces network delay as a lower bound for

confirmation times. Intuitively, a slow block rate yields a low fork frequency whereas

a fast block rate yields a high fork frequency. Since forks delay validator agreement,

arbitrarily fast payment confirmation cannot obtain for a decentralized PoW blockchain.

9Equation (3) follows from Definition 3.1 (iv) and Proposition 3.1 (A)
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Proposition 4.2. Arbitrarily Large Payment Confirmation Time

All user payment confirmation times diverge as demand diverges, pi.e., @i : lim
NÑ8

Wi �
8q. This result holds in particular for the marginal user pi.e., i such that ci � c�q, who

is serviced with highest priority pi.e., @j : fi ¥ fjq.

Next, we turn our attention to how payment confirmation times vary with increases

in transaction demand. Proposition 4.2 establishes that payment confirmation times

diverge for all users, including the highest priority user, as transaction demand grows.10

A PoW blockchain imposes an artificial supply constraint via a fixed block rate.

As transaction demand rises, the artifical supply constraint induces higher fees which in

turn causes more validators to enter the network. The larger validator network increases

network delay which in turn increases fork frequency and yields arbitrarily large payment

confirmation times even for the highest priority user. Although the highest priority user

receives service first (with probability one), her expected confirmation time diverges

because expected fork resolution time diverges.

4.2 Limited Adoption Problem

The aforementioned elongated payment confirmation times have important implica-

tions for the viability of a PoW payments blockchain. Specifically, a PoW payments

blockchain cannot simultaneously sustain a large volume and a non-negligible market

share. Proposition 4.3 formalizes that result.

Proposition 4.3. An Adoption Problem

Adoption decreases as demand rises pi.e., c� decreases in Nq. Moreover, the blockchain

faces limited adoption pi.e., lim
NÑ8

c� � 0q.

Section 4.1 demonstrates that increases in transaction demand eventually yield in-

creases in expected confirmation times for all blockchain users. These increased payment

10We refer to User i such that ci � c� as the highest priority user. Any such user receives service
first with probability one.
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confirmation times drive users from the blockchain to traditional payment systems. If

the blockchain sustains a large volume, then congestion induces fees which leads to

validator entry. That validator entry prolongs payment confirmation times and thereby

drives away all but the most dogmatic blockchain fanatics (i.e., Users i such that ci ¤ c�).

Therefore, PoW payments blockchains such as Bitcoin cannot obtain widespread adop-

tion; rather, limited adoption constitutes an intrinsic and endogenous characteristic of

such blockchains.

To highlight the role of endogenous network delay, we compare adoption associated

with a variable network delay function to that associated with a constant network delay

function via Proposition 4.4. Proposition 4.4 establishes that adoption for a network

with constant delay eventually dominates that for a network with variable delay. The

constant network delay may initially exceed the variable network delay, but network

size diverges with transaction demand so that the variable nature of network delay in

practice (see Chung and Lu (2002) and Riordan and Wormald (2010)) exacerbates the

limited adoption problem.

Proposition 4.4. Endogenous Network Delay

Let c�v denote the adoption rate of a network with variable network delay that satisfies

the regularity discussed within Section 3. Let c�c denote the adoption rate of a network

with constant network delay. Then, c�v   c�c for large transaction demands pi.e., DN :

@N ¡ N : c�v   c�c q.

One may conjecture that a relaxation of PoW’s artificial supply constraint (i.e., in-

creasing Λ) may provide a solution to the limited adoption problem. Proposition 4.5,

however, demonstrates that such an approach succeeds only in so far as it induces cen-

tralization. This result arises because relaxing PoW’s artificial supply constraint implies

a faster block rate which in turn increases disagreement among validators because blocks

arrive too rapidly relative to network delay. A faster block rate paradoxically eventu-
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ally increases wait times by prolonging the validator agreement process. This difficulty

may be overcome only if the network possesses one validator which eliminates the need

for communication among validators. Thus, even allowing dynamic supply achieves

widespread adoption only at the expense of decentralization. The notion of sacrificing

decentralization to obtain widespread adoption motivates one alternative solution: a

semi-centralized permissioned blockchain. We analyze that setting in Section 5.

Proposition 4.5. Decentralization implies Limited Adoption

For exposition, we assume that lim
NÑ8

c� exist. The blockchain necessarily faces either

centralization pi.e., lim sup
NÑ8

V ¤ 1q or limited adoption pi.e., lim
NÑ8

c� � 0q.

The supply constraint can also be relaxed by increasing the number of transactions

that can be recorded on any single block. Our model can be generalized to capture

an alternative increase through larger block size. As noted by Decker and Wattenhofer

(2013), the network delay increases linearly in the block size. Thus, a larger block

size increases the fork propensity due to higher network delay and thereby also fails to

remedy the limited adoption problem.

Our results may be interpreted as an economic parallel of Vitalik Buterin’s Blockchain

Trilemma.11 Buterin’s Trilemma pits decentralization, scalability and security against

one another. Our analysis assumes security and demonstrates that a secure PoW pay-

ments blockchain cannot simultaneously achieve both scalability and decentralization.

Proposition 4.3 demonstrates that a secure PoW payments blockchain cannot scale in

the sense that such a blockchain cannot realize high transaction volumes and a non-

negligible payments market share. Proposition 4.5 then highlights that increasing the

blockchain’s throughput resolves the scalability issue only if that increased through-

put induces centralization. Hence, a PoW payments blockchain cannot simultaneously

achieve decentralization, scalability and security as Buterin suggested.

11The interested reader may consult https://github.com/ethereum/wiki/wiki/Sharding-FAQs

for further details.
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Proposition 4.6. No Adoption Problem Without Network Delay

Both widespread adoption pi.e., lim
NÑ8

c� ¡ 0q and decentralization pi.e., lim
NÑ8

V � 8q
can be obtained simultaneously under the counterfactual assumption of no network delay

pi.e., ∆pV q � 0q.

Before transitioning to a discussion surrounding permissioned blockchains, we offer

a final PoW result to demonstrate the importance of network delay in generating our

results. Proposition 4.6 assumes, counterfactually, that network delay does not exist

(i.e., ∆pV q � 0). Under this assumption a PoW payments blockchain can overcome

the limited adoption problem. Widespread adoption becomes possible for a decentral-

ized PoW system in the absence of network delay which establishes that network delay

constitutes a critical factor for our results.

Our results highlight that limited adoption constitutes an endogenous and endemic

characteristic of PoW payments blockchains. PoW combines an artificial supply con-

straint, free entry among validators and network delay that collectively make the system

intrinsically impractical for widespread adoption. Our results do not argue against the

potential for blockchain more broadly. In fact, we subsequently offer an alternative

blockchain solution that overcomes the limited adoption problem.

5 A Permissioned Alternative

Proposition 4.5 highlights that a PoW payments blockchain must centralize to over-

come the limited adoption problem. In this section, we consider a semi-centralized alter-

native: a permissioned blockchain.12 Section 5.1 formally puts forth the permissioned

blockchain model. Section 5.2 establishes that permissioned blockchains can obtain low

12Our focus upon permissioned blockchains does not imply that a permissionless setting cannot
overcome the limited adoption problem. Some promising permissionless protocols include Byzantine
Consensus PoS (e.g., Chen and Micali (2016)), delegated PoS (e.g., Kiayias et al. (2017)) and off-chain
solutions (e.g., Poon and Dryja (2016) and Li, Wang, Xiei, and Zou (2019a)).
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confirmation times and widespread adoption.

Nonetheless, those benefits are insufficient for a blockchain to be viable. Establish-

ing blockchain security constitutes a necessary condition for blockchain viability. We

consider that topic for a permissioned blockchain in Sections 5.3 and 5.4. Section 5.3

introduces a standard consensus protocol and demonstrates that this protocol may in-

cur successful attacks in equilibrium. Section 5.4 introduces an alternative protocol that

overcomes both the limited adoption problem and blockchain attacks.

5.1 Permissioned Blockchain Model

We model users as in Section 3 since the blockchain itself does not affect transaction

demand. Unlike Section 3, we exogenously specify a set of validators, VP P N.13 All

transactions enter at t � 0 at a single node so that all validators observe the full set

of transactions by t � ∆pVP q. As with a PoW setting, validators instantly validate

transactions. However, unlike a PoW setting, they need not solve any puzzle to partake

in the consensus process so that no artificial supply constraint exists.

PoW attempts to create incentives for validators to not maliciously attack the

blockchain. Thus, in offering an alternative, we focus on not only user adoption but

also validator incentives. Validator i selects ai P t0, 1u with ai � 0 corresponding to

malicious behavior and ai � 1 corresponding to honest behavior. Malicious behavior

yields some profit, Π ¡ 0, if the attack succeeds. In contrast, a failed attack imposes a

cost, κ ¡ 0, on a malicious validator. For simplicity, we assume that an honest validator

earns neither a profit nor a loss. The success of an attack depends upon the blockchain’s

consensus protocol which we discuss later in this section.

A permissioned blockchain may possess a cryptocurrency which enables a blockchain

designer to shape validator incentives. We invoke a cryptocurrency when designing our

own consensus protocol and denote Validator i’s holding of that cryptocurrency by

13For exposition, we impose VP ¥ 3 in the equilibrium analysis.
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αi P R.

We define a consensus protocol as a function ω : t0, 1uVP � RVP ÞÑ tp P r0, 1sVP :
VP°
i�1

pi � 1u with ωi corresponding to the probability that Validator i’s ledger becomes the

consensus ledger.14 We further define Γpa1, ..., aVP , α1, ..., αVP q �
VP°
i�1

ωipa1, ..., aVP , α1, ..., αVP q ai
so that Γ gives the probability that the blockchain does not suffer a successful attack.

Saleh (2019a) demonstrates that a cryptocurrency’s price depends upon validator

behavior on the associated blockchain. Taking such a premise as given, we assume that

P∆pVP q � PH if the blockchain does not suffer a successful attack and P∆pVP q � PL

otherwise with Pt, t P t0,∆pVP qu, denoting the time-t cryptocurrency price and PH ¡
PL ¡ 0.

Definition 5.1. Permissioned Equilibrium

A Permissioned Equilibrium is an entrant cut-off, c�P P r0, 1s, a cryptocurrency price,

P0, a set of validator decisions, taiuVPi�1 P t0, 1uVP and a set of validator cryptocurrency

holdings, tαiuVPi�1 P RVP , given a validator network size, VP ¥ 3, a number of users,

N ¥ 2, a blockchain utility, RP ¡ 0, and a consensus protocol, ω, such that:

(i) @i : ci ¤ c�P ô RP � ci∆pVP q ¥ 0

(ii) pai, αiq P arg sup
pa,αq

Φpa, α; a�i, α�iq
with Φpa, α; a�i, α�iq � pΠ�pΠ�κqErΓpa, a�i, α, α�iqsqIa�0�αpErP∆pVP qs�P0q

(iii) P0 � ΓPH � p1� ΓqPL.

Definition 5.1 defines a Permissioned Equilibrium.15 Definition 5.1 (i) asserts that

a user employs the blockchain if and only if she (weakly) gains from employing the

blockchain instead of a traditional payment system. Definition 5.1 (ii) requires that

validators act optimally. We assume that all validators possess risk neutral preferences

14Our consensus protocol specification arises as a simplification of the more general construct.
15For exposition, we restrict our attention to pure strategies.
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with perfect patience so that Definition 5.1 (iii) constitutes a necessary condition for

equilibrium.

5.2 Permissioned Blockchain Benefits

Proposition 5.1. Lower Payment Confirmation Times

For any PoW protocol, there exists a permissioned blockchain which induces (weakly)

lower payment confirmation times.

Section 4 demonstrates that PoW suffers from large payment confirmation times.

This issue arises due to an artificial supply constraint and network delay which can

be exacerbated by the permissionless nature of a PoW blockchain. A permissioned

blockchain that omits PoW’s artificial supply constraint enables lower payment confir-

mation times. Proposition 5.1 formalizes that assertion.

Proposition 5.2. No Limited Adoption Problem

In any Permissioned Equilibrium, widespread adoption (i.e., lim
NÑ8

c�P � mint RP

∆pVP q
, 1u ¡

0) obtains.

Section 4 establishes that PoW faces the limited adoption problem. Proposition 5.2

highlights that a permissioned blockchain does not face that problem. This result arises

because the lack of an artificial supply constraint facilitates timely service even for high

transaction volumes. Thus, as Proposition 5.2 posits, a permissioned blockchain may

obtain widespread adoption.

5.3 Majority Rule Consensus

Definition 5.2. Majority Rule Permissioned Equilibrium (MRPE)

A Majority Rule Permissioned Equilibrium (MRPE) is a Permissioned Equilibrium such
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that voting power is equally distributed among the majority.16 More formally, ωi �
It|Sai | ¡ |S1�ai | _ |Sai | � |S1�ai | ^ ai � 0u � 1

|Sai |
. Moreover, Sa � ti : ai � au.

Lemma 5.3. Majority Rule Permissioned Equilibrium pMRPEq
For a Majority Rule Permissioned Equilibrium pMRPEq, the blockchain does not suffer a

successful attack if and only if honest validators strictly outnumber malicious validators

pi.e., Γ � It|S1| ¡ |S0|uq.

Definition 5.2 specializes Definition 5.1 to a standard permissioned blockchain pro-

tocol. This standard permissioned blockchain protocol determines blockchain updates

by a simple majority rule. Lemma 5.3 formalizes that assertion.

As established by Proposition 5.2, a majority rule permissioned blockchain overcomes

the limited adoption problem. Nonetheless, the viability of a blockchain requires also

that it overcomes attacks. We discuss this issue subsequently.

Proposition 5.4. Honest MRPE

There exists an MRPE in which all validators behave honestly and the blockchain does

not suffer a successful attack pi.e., DMRPE s.t. @i : ai � 1,Γ � 1q.

Proposition 5.4 establishes the existence of an equilibrium in which all validators

behave honestly. This result arises because a single validator cannot successfully attack

the blockchain by behaving maliciously if all other validators behave honestly. Malicious

behavior yields a cost to reputation with no off-setting gain so that honest behavior

constitutes the unique best response to all other validators behaving honestly.

Proposition 5.5. Malicious MRPE

There exists an MRPE in which all validators behave maliciously and the blockchain

suffers a successful attack pi.e, DMRPE s.t. @i : ai � 0,Γ � 0q.
16In case of a tie, we treat the malicious validators as the majority.
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Proposition 5.5 establishes the existence of a second equilibrium in which all valida-

tors behave maliciously. This result arises because a single validator cannot unilaterally

thwart a blockchain attack by behaving honestly. Honest behavior forgoes a reward from

colluding to attack the blockchain when all other validators behave maliciously. Conse-

quently, malicious behavior constitutes the unique best response to all other validators

behaving maliciously.

Proposition 5.5 raises concern about employing a permissioned blockchain with a

majority rule consensus protocol. Ideally, we wish a blockchain to both overcome the

limited adoption problem and possess no equilibria in which a blockchain attack suc-

ceeds. Section 5.4 offers an alternative protocol that achieves both the desired goals.

5.4 Stake-Based Consensus

Definition 5.3. Stake-Based Permissioned Equilibrium (SBPE)

A Stake-Based Permissioned Equilibrium (SBPE) is a Permissioned Equilibrium such

that voting power is equally distributed among the validators with majority stake.17

More formally, ωi � ItTai ¡ T1�ai _ Tai � T1�ai ^ ai � 0u � 1
|Sai |

with Ta �
°
iPSa

α�i .

Lemma 5.6. Stake-Based Permissioned Equilibrium pSBPEq
For a Stake-Based Permissioned Equilibrium pSBPEq, the blockchain does not suffer a

successful attack if and only if the cumulative stake of honest validators strictly outweighs

that of malicious validators pi.e., Γ � ItT1 ¡ T0uq.

Definition 5.3 specializes Definition 5.1 to a permissioned blockchain protocol that

we refer to as a stake-based protocol. This protocol determines blockchain updates by

majority stake (with zero weights given to short-sale positions) rather than majority

rule. By majority stake we refer to a protocol under which a validators’ vote is weighted

by her holding in the native cryptocurrency. Lemma 5.6 formalizes that result.

17In case of a tie, we treat the malicious validators as having the larger stake.

21



Proposition 5.7. Honest SBPE

There exists an SBPE in which all validators behave honestly and the blockchain does

not suffer a successful attack pi.e., DSBPE s.t. @i : ai � 1,Γ � 1q.

Proposition 5.7 establishes the existence of an equilibrium in which all validators

behave honestly. This equilibrium arises for similar reasons as that described within

Proposition 5.4, so we omit further discussion.

Proposition 5.8. No Malicious SBPE

There exists no SBPE in which an attack succeeds with strictly positive probability pi.e.,

Γ � 1 for all equilibriaq.

Proposition 5.8 highlights the non-existence of an equilibrium in which a blockchain

attack succeeds. This result arises because a single validator may become marginal by

acquiring a sufficiently large stake. Since a validator’s profit varies with her cryptocur-

rency position, she opts to become marginal and prevent a blockchain attack if she

believes that an attack succeeds otherwise. Thus, a blockchain attack cannot succeed in

equilibrium. A stake-based permissioned blockchain overcomes both blockchain attacks

and the limited adoption problem.

6 Conclusion

Bitcoin has been envisioned as alternative to traditional payment systems. While in-

dividual vendors have adopted Bitcoin and other PoW payment platforms, no such plat-

form has obtained widespread adoption. We demonstrate that this lack of widespread

adoption constitutes an intrinsic property of PoW payments blockchains. PoW im-

poses an artificial supply constraint on transactions. As transaction demand grows, fees

increase endogenously. Due to the permissionless nature of PoW blockchains, more val-

idators engage in the validation process. That entry expands the network size thereby
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protracting the consensus process and generating increased payment confirmation times.

Thus, only users extremely insensitive to wait times transact via the blockchain in equi-

librium and limited adoption arises. We demonstrate that this limited adoption cannot

be overcome by relaxing the artificial supply constraint. Rather, network delay ensures

limited adoption for decentralized PoW payment blockchains.

We consider permissioned blockchains as an alternative to PoW blockchains. We

demonstrate that permissioned blockchain may overcome the limited adoption problem.

Permissioned blockchains, however, may generate malicious validator behavior. In fact,

under a simple permissioned consensus protocol, an equilibrium with malicious validator

behavior and a successful blockchain attack exists. We propose an alternative protocol

that overcomes this undesirable feature. This protocol employs a cryptocurrency native

to the blockchain to align validator incentives such that a blockchain attack cannot

succeed in equilibrium.

This paper has important policy implications. It directly concerns adoption of

blockchain as a payment system. The limited adoption problem makes PoW blockchains

impractical for widespread adoption as a payment system. Our work highlights the need

for research examining alternative protocols.
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Appendices

A CTMC Blockchain Model

We model the blockchain as a Continuous Time Markov Chain (CTMC), tXtut¥0, with

states x P X � t0, 1, ..., ku with x   k denoting that the blockchains last x heights

contain single block and x � k denoting the complement. Given the discussion in

Section 3, x   k corresponds to the blockchain being in the midst of a fork and x � k

corresponds to the complement. This section offers background results including the

stationary distribution and sojourn times.

Formally, the CTMC rate matrix, Q P RX�X , characterizes our model. For expo-

sition, we define ppx, yq � 1 � e�xy and abuse notation by setting p � ppΛ,∆pV qq �
1 � e�Λ∆pV q P p0, 1q. Then, @x P X{t0, ku : Qx,x � �Λ, @x P X{t0u : Qx,0 � Λp,

@x P X{tku : Qx,x�1 � Λp1 � pq, QK,K � �Λp, Q0,0 � �Λp1 � pq and all other entries

equal 0.

Lemma A.1. Stationary Distribution

tπxuxPX corresponds to the unique stationary distribution with @x   k : πx � pp1 � pqx

and πk � p1� pqk

Proof.

Any stationary distribution, π̃ P RX , must satisfy π̃Q � 0. The result follows from

algebra.

For exposition, we uniformize our CTMC. We let tYtutPN denote the associated Dis-

crete Time Markov Chain (DTMC) and P P RX�X denote the associated transition

matrix. Then, Xt � YNptq with tNptqut¥0 being a Poisson Process with rate λV .

Lemma A.2. Fork Resolution Times

We define Tk � inftt P N : Yt � ku. Then, The expected block heights until fork
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resolution, sx � ErTk|Y0 � xs, conditional upon initial state, x P X, satisfies @x P X :

sx � p1� s0pq 1�p1�pqk�x

p
@x P X so that s0 � 1�p1�pqk

pp1�pqk
.

Proof.

We prove the result by induction. sk�j � p1 � s0pq
j�1°
i�0

p1 � pqi holds for j � 1 by

definition. Then, sk�pj�1q � 1 � p1 � pqsk�j � ps0 � p1 � s0pq
pj�1q�1°
i�0

p1 � pqi with the

last equality following from the inductive hypothesis. The conclusion then follows from

algebra.

Subsequently, we provide results useful for establishing existence of a PoW equilibria.

Lemma A.3. Monotone Fork Resolution Times

@x P X{tku : sx ¡ sx�1 ¥ 0

Proof.

We prove the result by induction. By definition, @x P X{tku : sx � 1�p1�pqsx�1�ps0

so that s0 ¡ s1 follows by taking x � 0. Then, by induction, sx � 1�p1�pqsx�1�ps0 ¡
1� p1� pqsx�1 � psx which implies sx ¡ sx�1 as desired. @x P X{tku : sx�1 ¥ 0 follows

from sK � 0.

Hereafter, we define @x P X : sxpΛ,∆pV qq � sxppq � sxpppΛ,∆pV qqq and abuse

notation by using sx to mean the multivariate function. Similarly, we define @x P X :

πxpΛ,∆pV qq � πxppq � πxpppΛ,∆pV qqq and abuse notation by using πx to mean the

multivariate function.

Lemma A.4. Monotone Fork Resolution Derivatives

@x P X{tku : Bsx
BΛ

¡ Bsx�1

BΛ
¥ 0, Bsx

B∆pV q
¡ Bsx�1

B∆pV q
¥ 0

Proof.

We prove the result by induction. By definition, @x P X{tku : sx � 1�p1�pqsx�1�ps0 so

that s0 � eΛ∆pV q�s1 so that Bs0
BΛ

¡ Bs1
BΛ

follows immediately. Then, sx � 1�e�Λ∆pV qsx�1�
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p1�e�Λ∆pV qqs0 so that Bsx
BΛ

� e�Λ∆pV q Bsx�1

BΛ
�∆pV qe�Λ∆pV qps0�sx�1q�p1�e�Λ∆pV qqBs0

BΛ
¡

Bsx�1

BΛ
with the last inequality following by induction and Lemma A.3 which implies

Bsx
BΛ

¡ Bsx�1

BΛ
as desired. @x P X{tku : Bsx�1

BΛ
¥ 0 follows from BsK

BΛ
� 0. Symmetry of

the functions, tsXuxPX , implies @x P X{tku : Bsx
B∆pV q

¡ Bsx�1

B∆pV q
¥ 0 which completes the

proof.

We define τ � Er
Tk°
t�1

Ats as the expected fork resolution time under the stationary dis-

tribution with tAtu8t�1 independent and exponentially distributed with parameter Λ and

initial distribution tπxuxPX . Then, by definition, τ � τpΛ,∆pV qq � °
xPX

sxpΛ,∆pV qq
Λ

πxpΛ,∆pV qq.

Lemma A.5. Lower Bound for τ

τpΛ,∆pV qq ¥ ∆pV q eΛ∆pV qk�1
Λ∆pV q

Proof.

τpΛ,∆pV qq ¥ ∆pV q s0pΛ,∆pV qq
Λ∆pV q

π0pΛ,∆pV qq � ∆pV q eΛ∆pV qk�1
Λ∆pV q

as desired.

We define ΨpΛ, V q � τpΛ,∆pV qq� 1
Λ

which equates with the expected wait time for

the marginal user (i.e., Type ci � c�). Then, trivially, BΨ
BV
� BΨ

BV
.

Lemma A.6. Increasing Wait Time in V

@V 1 ¡ V ¥ 0 : ΨpΛ, V 1q �ΨpΛ, V q � τpΛ,∆pV 1qq � τpΛ,∆pV qq ¡ 0

Proof.

ΨpΛ, V 1q �ΨpΛ, V q
� τpΛ,∆pV 1qq � τpΛ,∆pV qq
� °

xPX

t sxpΛ,∆pV 1qq
Λ

πxpΛ,∆pV 1qq � sxpΛ,∆pV qq
Λ

πxpΛ,∆pV qqu
¥ °

xPX

sxpΛ,∆pV 1qq�sxpΛ,∆pV qq
Λ

πxpΛ,∆pV qq

� °
xPX

1
Λ

V 1³
V

Bsx
B∆pV q

∆1pvqdv πxpΛ,∆pV qq
¡ 0
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Lemma A.7. Zero Wait

τpΛ, 0q � 0

Proof.

τpΛ, 0q � skpΛ, 0q � 0

B Proofs

Proposition 3.1 Existence and Uniqueness of a PoW Equilibrium

There exists a PoW Equilibrium. There exists no other equilibrium for which φ con-

stitutes a strictly increasing and differentiable function on the interval p0, c�q. The

following conditions characterize the equilibrium:

(A) φpciq � pN � 1q c2i
2Λ

if ci ¤ c� and φpciq � 0 otherwise

(B) R   ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

ùñ R � c�ΨpΛ, V q � pc�q2pN�1q
2Λ

(C) R ¥ ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

ùñ c� � 1

(D) βV � pN � 1qN pc�q3

6Λ
.

Proof.

For coherence of our discussion, we must specify an initial distribution for our Blockchain

CTMC model. We specify that distribution as the stationary distribution. The inter-

ested reader may consult Appendix A for details. For exposition, we define V �pN, c�,Λ, βq �
pN�1qNpc�q3

6βΛ
.

As a preliminary step, we rule out the existence of any equilibrium such that c� � 0.

By contradiction, we suppose there exists an equilibrium such that c� � 0. Definition

3.1 (iv) implies max
f¥0

R � ci � ErW pf, f�iq | cis � f ¥ R � ci � ErW p0, f�iq | cis ¥ R �
cipNΛ � τpΛ, V qq. Then, Definition 3.1 (ii) yields @ci ¡ 0 : R� cipNΛ � τpΛ, V qq ¤ 0 which
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in turn implies R ¤ 0. R ¤ 0 contradicts our assumption R ¡ 0 and thereby eliminates

the possibility of an equilibrium such that c� � 0.

Problem 1 and Definitions 3.1 (iii) and (iv) yield max
f¥0

R� ci � ErW pf, f�iq|cis � f �
max
f¥0

R� ci pN�1q
Λ

Ppφpcjq ¥ f ^ c� ¥ cjq� ciΨpΛ, V q� f . φpciq being a strictly increasing

function enables us to rewrite the latter problem as max
f¥0

R�ci pN�1q
Λ

maxtc��φ�1pfq, 0u�
ciΨpΛ, V q � f . Differentiability of φ then yields cipN�1q

Λ
1

φ1pφ�1pfqq
� 1 as a first-order

condition for ci P p0, c�q. In equilibrium, fi � φpciq for ci P r0, c�s so that the latter

condition simplifies to cipN�1q
Λ

� φ1pciq for ci P r0, c�s. In turn, that result implies

φpciq � pN � 1q c2i
2Λ

over c P r0, c�s. This result demonstrates that Proposition 3.1 (A) is

necessary for the class of equilibria considered. Sufficiency for satisfying Definition 3.1

(i) follows from negativity of the objective’s second derivative for Problem 1.

To establish existence and uniqueness of an equilibrium, we must establish the ex-

istence of some V ¡ 0 and c� P r0, 1s such that Definitions 3.1 (ii) and (v) hold with

φpciq � pN � 1q c2i
2Λ

given and Definitions 3.1 (iii) and (iv) taken as definitions for fi and

W pf, fiq respectively.

For c� P p0, 1q, Definition 3.1 (iii) and φpciq � pN � 1q c2i
2Λ

imply Definition 3.1 (v)

equates with V �pN, c�,Λ, βq � V . Moreover, 3.1 (ii) implies @ci ¡ c� : 0 ¡ max
f¥0

R �
ci � ErW pf, f�iq | cis � f ¥ R � ciΨpΛ, V q � pc�q2pN�1q

2Λ
so that another application of

3.1 (ii) implies R � c�ΨpΛ, V q � pc�q2pN�1q
2Λ

. Thus, existence and uniqueness equates

with finding a unique solution, c� P p0, 1q, to R � c�ΨpΛ, V �pN, c�,Λ, βqq � pc�q2pN�1q
2Λ

�
Gpc�;N,Λ, βq. Lemma A.7 yields Gp0;N,Λ, βq � 0   R so that if Gp1;N,Λ, βq �
ΨpΛ, pN�1qN

6βΛ
q � N�1

2Λ
¡ R then continuity and strict monotonicity of G in c� imply

existence and uniqueness of an equilibrium with c� P p0, 1q and V � V �pN, c�,Λ, βq.
To conclude, we need demonstrate only non-existence of an equilibrium with c� � 1 if

ΨpΛ, pN�1qN
6βΛ

q� N�1
2Λ

¡ R and existence of a unique equilibrium with c� � 1 otherwise. If

c� � 1 then V � pN�1qN
6βΛ

uniquely satisfies Definition 3.1 (v) so that R ¥ ΨpΛ, pN�1qN
6βΛ

q�
N�1
2Λ

by Definitions 3.1 (ii) - (iv) and φpciq � pN � 1q c2i
2Λ

. Thus, no equilibrium with
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c� � 1 exists if R   ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

. Existence of a unique equilibrium with c� � 1

follows because c� � 1 and V � pN�1qN
6βΛ

satisfy all conditions for Definition 3.1 and all

other choices for V violate Definition 3.1 (v).

Proposition 4.1 Payment Confirmation Lower Bound

Network delay bounds below all user payment confirmation times pi.e., @i : Wi ¥
τpΛ, V q ¥ ∆pV qq.

Proof.

Follows immediately from Lemma A.5

Lemma B.1. Increasing V

V increases in N and lim
NÑ8

V pNq � 8

Proof.

If R ¥ ΨpΛ, pN�1qN
6βΛ

q � N�1
2Λ

then dV
dN

¡ 0 follows from Proposition 3.1 (D). Oth-

erwise, Proposition 3.1 (B) and (D) imply R � 3

b
6βΛV
NpN�1q

ΨpΛ, V q � 3

b
9β2V 2pN�1q

2ΛN2 �
HpV,N ; β,Λq � HpV,Nq. Proposition 3.1 implies the existence of a non-negative func-

tion V pNq that uniquely satisfies R � HpV pNq, Nq. By the implicit function theorem,

dV
dN

� � BH
BN
BH
BV

¡ 0 which in turn implies the existence of lim
NÑ8

V pNq. 0 ¤ lim
NÑ8

V pNq   8
implies lim

NÑ8
HpV,Nq � 0 so that lim

NÑ8
HpV,Nq � R ¡ 0 yields the desired conclu-

sion.

Proposition 4.2 Arbitrarily Large Payment Confirmation Time

All user payment confirmation times diverge as demand diverges, pi.e., @i : lim
NÑ8

Wi �
8q. This result holds in particular for the marginal user pi.e., i such that ci � c�q, who

is serviced with highest priority pi.e., @j : fi ¥ fjq.

Proof.

Proposition 4.1 yields Wi ¥ ΨpΛ, V q ¥ τpΛ, V q ¥ ∆pV q so that Lemma B.1 and
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lim
VÑ8

∆pV q � 8 delivers the result.

Proposition 4.3 An Adoption Problem

Adoption decreases as demand rises pi.e., c� decreases in Nq. Moreover, the blockchain

faces limited adoption pi.e., lim
NÑ8

c� � 0q.

Proof.

Proposition 3.1 and Lemma B.1 imply that c� decreases in N so that lim
NÑ8

c� P r0, 1s ex-

ists. lim
NÑ8

c� P p0, 1s implies lim
NÑ8

tc�ΨpΛ, V q� pc�q2pN�1q
2Λ

u � 8 so that lim
NÑ8

tc�ΨpΛ, V q�
pc�q2pN�1q

2Λ
u � R   8 via Proposition 3.1 (B) yields lim

NÑ8
c� � 0 as desired.

Proposition 4.4 Endogenous Network Delay

Let c�v denote the adoption rate of a network with variable network delay that satisfies

the regularity discussed within Section 3. Let c�c denote the adoption rate of a network

with constant network delay. Then, c�v   c�c for large transaction demands pi.e., DN :

@N ¡ N : c�v   c�c q.

Proof.

From Appendix A, recall that ΨpΛ, V q � τpΛ,∆pV qq � 1
Λ

. Let ∆c denote the con-

stant network delay passociated with c�c q and ∆vpV q denote the variable network delay

passociated with c�vq. Then, Proposition 3.1 implies that @N ¡ 2RΛ�1 : c�vpτpΛ,∆vpV qq�
1
Λ
q � pc�v q

2pN�1q
2Λ

� c�c pτpΛ,∆cq � 1
Λ
q � pc�c q

2pN�1q
2Λ

. Lemmas A.5 and B.1 imply DN1 ¡ 0 :

@N ¥ N1 : τpΛ,∆vpV qq ¥ τpΛ,∆cq so that @N ¡ maxtN1, 2RΛ�1u � N : c�vpτpΛ,∆cq�
1
Λ
q � pc�v q

2pN�1q
2Λ

¤ c�c pτpΛ,∆cq � 1
Λ
q � pc�c q

2pN�1q
2Λ

which implies @N ¡ N : c�v   c�c as de-

sired.

Proposition 4.5 Decentralization implies Limited Adoption

For exposition, we assume that lim
NÑ8

c� exist. The blockchain necessarily faces either

centralization pi.e., lim sup
NÑ8

V ¤ 1q or limited adoption pi.e., lim
NÑ8

c� � 0q.
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Proof.

Formally, we consider a sequence of parameters tpNn,Λn, R, βqunPN with R, β ¡ 0,

2 ¤ Nn Õ 8. Then, following Proposition 3.1, there exists a sequence tpc�n, VnqunPN
such that pc�n, Vnq corresponds to the equilibrium solution for a model with parameters

pNn,Λn, R, βq.
We proceed by contradiction. We assume that L � lim sup

nÑ8
Vn ¡ 1 andM � lim

nÑ8
c�n ¡

0. We take a subsequence, tpNnj
,Λnj

, c�nj
, Vnj

qujPN, such that @j : Vnj
¥ 1�L

2
. Then,

Proposition 3.1 (B) and (C) yield Λnj
¥ pc�nj

q2pNnj�1q

2R
so that lim

jÑ8
Λnj

� 8. Lemma

A.5 and Proposition 3.1 (B) - (C) then give R ¥ c�nj
∆pVnj

q eΛnj ∆pVnj q�1
Λnj ∆pVnj q

so that mono-

tonicity of ∆ coupled with @j : Vnj
¥ 1�L

2
yields R ¥ c�nj

∆p1�L
2
q eΛnj ∆p 1�L

2 q
�1

Λnj ∆p 1�L
2
q

. Finally,

invoking lim
jÑ8

Λnj
� 8 gives R ¥ lim

jÑ8
c�nj

∆p1�L
2
q eΛnj ∆p 1�L

2 q
�1

Λnj ∆p 1�L
2
q
� 8 delivering the desired

contradiction and thereby completing the proof.

Proposition 4.6 No Adoption Problem Without Network Delay

Both widespread adoption pi.e., lim
NÑ8

c� ¡ 0q and decentralization pi.e., lim
NÑ8

V � 8q
can be obtained simultaneously under the counterfactual assumption of no network delay

pi.e., ∆pV q � 0q.

Proof.

Formally, we take a sequence of parameters tpNn, R, βqunPN such that R, β ¡ 0, 2 ¤
Nn Õ 8 and construct a sequence tΛnu8n�1. Then, we provide a sequence tpc�n, VnqunPN
such that pc�n, Vnq corresponds to equilibrium solutions for a model with parameters

pNn,Λn, R, βq. We demonstrate that, given our choice, tΛnu8n�1, lim
nÑ8

c�n ¡ 0 and

lim
nÑ8

Vn � 8 if ∆pV q � 0 (i.e., no network delay). Note that this result does not

contradict Proposition 4.5 as all parts of the paper (except this proposition) preclude

∆pV q � 0 (i.e., we assume existence of network delay outside of this proposition).

Let Λn � Nn�1
2

. Let c�n � mintcn, 1u with cn being the unique positive solution

for R � cn
Λn

� c2
n and let Vn � Nnpc�q3

3
. Then, tpc�n, VnqunPN satisfies all conditions
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from Definition 3.1 thereby constituting an equilibrium for tpNn, R, βqunPN. Moreover,

lim
nÑ8

c�n � c� � mint?R, 1u ¡ 0 and lim
nÑ8

Vn � 8 as desired.

Proposition 5.1 Lower Payment Confirmation Times

For any PoW protocol, there exists a permissioned blockchain which induces (weakly)

lower payment confirmation time.

Proof.

Let VP � V . Then, the result follows from Proposition 4.1.

Proposition 5.2 No Limited Adoption Problem

In any Permissioned Equilibrium, widespread adoption (i.e., lim
NÑ8

c�P � mint RP

∆pVP q
, 1u ¡

0) obtains.

Proof.

RP � ci∆pVP q decreases in ci so that Definition 5.1 (i) implies c�P � mint RP

∆pVP q
, 1u so

that lim
NÑ8

c�P � mint RP

∆pVP q
, 1u follows trivially.

Lemma 5.3 Majority Rule Permissioned Blockchain Equilibrium (MRPBE)

For a Majority Rule Permissioned Equilibrium pMRPEq, the blockchain does not suffer a

successful attack if and only if honest validators strictly outnumber malicious validators

pi.e., Γ � It|S1| ¡ |S0|uq.

Proof.

Γpxq �
VP°
i�1

ωipxqai �
°
iPS1

ωipxq � Ip|Sp1q| ¡ |Sp0q|q

Proposition 5.4 Honest MRPBE

There exists an MRPE in which all validators behave honestly and the blockchain does

not suffer a successful attack pi.e., DMRPE s.t. @i : ai � 1,Γ � 1q.

Proof.

We demonstrate the existence of a symmetric equilibrium in which c�P � mint1, RP

∆pVP q
u,
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P0 � PH and @i : pai, αiq � p1, 0q. In such an equilibrium, all validators behave honestly

since @i : ai � 1 and Γ � 1 so that the blockchain does not sustain a successful attack.

Direct verification shows that c�P � mint1, RP

∆pVP q
u satisfies Definition 5.1 (i) and P0 �

PH satisfies Definition 5.1 (iii). As such, to prove the result, we need only demonstrate

that @a P t0, 1u, α P R : Φp1, 0; a�i, α�iq ¥ Φpa, α, a�i, α�iq with @j � i : paj, αjq �
p1, 0q. VP ¥ 3 implies Γ � 1 so that a P t0, 1u, α P R : Φpa, α; a�i, α�iq � �κIa�0 ¤ 0 �
Φp1, 0; a�i, α�iq as desired.

Proposition 5.5 Malicious MRPBE

There exists an MRPE in which all validators behave maliciously and the blockchain

suffers a successful attack pi.e, DMRPE s.t. @i : ai � 0,Γ � 0q.

Proof.

We demonstrate the existence of a symmetric equilibrium in which c�P � mint1, RP

∆pVP q
u,

P0 � PL and @i : pai, αiq � p0, 0q. In such an equilibrium, all validators behave mali-

ciously since @i : ai � 0 and Γ � 0 so that the blockchain sustains a successful attack

with probability 1.

Direct verification shows that c�P � mint1, RP

∆pVP q
u satisfies Definition 5.1 (i) and P0 �

PL satisfies Definition 5.1 (iii). As such, to prove the result, we need only demonstrate

that @a P t0, 1u, α P R : Φp0, 0; a�i, α�iq ¥ Φpa, α, a�i, α�iq with @j � i : paj, αjq �
p0, 0q. VP ¥ 3 implies Γ � 0 so that a P t0, 1u, α P R : Φpa, α; a�i, α�iq � ΠIa�0 ¤ Π �
Φp0, 0; a�i, α�iq as desired.

Lemma 5.6 Stake-Based Permissioned Equilibrium (SBPE)

For a Stake-Based Permissioned Equilibrium pSBPEq, the blockchain does not suffer a

successful attack if and only if the cumulative stake of honest validators strictly outweighs

that of malicious validators pi.e., Γ � ItT1 ¡ T0uq.

Proof.
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Γpxq �
VP°
i�1

ωipxqai �
°
iPS1

ωipxq � Ip
°
iPS1

α�i ¡
°
iPS0

α�i q

Proposition 5.7 Honest SBPE

There exists an SBPE in which all validators behave honestly and the blockchain does

not suffer a successful attack pi.e., DSBPE s.t. @i : ai � 1,Γ � 1q.

Proof.

We demonstrate the existence of a symmetric equilibrium in which c�P � mint1, RP

∆pVP q
u,

P0 � PH and @i : pai, αiq � p1, Π
PH�PL

q. In such an equilibrium, all validators behave

honestly since @i : ai � 1 and Γ � 1 so that the blockchain does not sustain a successful

attack.

Direct verification shows that c�P � mint1, RP

∆pVP q
u satisfies Definition 5.1 (i), and

P0 � PH satisfies Definition 5.1 (iii). As such, to prove the result, we need only

demonstrate that @a P t0, 1u, α P R : Φp1, Π
PH�PL

; a�i, α�iq ¥ Φpa, α, a�i, α�iq with

@j � i : paj, αjq � p1, Π
PH�PL

q. We define α � ΠpVP�1q
PH�PL

¥ 2Π
PH�PL

¡ 0.

Then, @a P t0, 1u, α P R :

Φpa, α; a�i, α�iq
¤ maxt sup

α� α
Φpa, α�; a�i, α�iq, sup

α�¥α
Φpa, α�; a�i, α�iq u

¤ maxt�κIa�0,maxt0,Π� pPL � PHqα u u
¤ 0

Φp1, Π
PH�PL

; a�i, α�iq � 0 completes the proof.

Proposition 5.8 No Malicious SBPE

There exists no SBPE in which an attack succeeds with strictly positive probability pi.e.,

Γ � 1 for all equilibriaq.

Proof.

We proceed by contradiction. We assume that there exists an equilibrium in which
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an attack succeeds with strictly positive probability (i.e., Γ   1). Via Lemma 5.6,

Γ   1 ùñ Γ � 0 which in turn implies P0 � PL via Definition 5.1 (iii). Then, defining

α� �
°

jPS0,j�1

αj �
°

jPS1,j�1

αj � 1 implies sup
pa,αq

Φpa, α; a�1, α�1q ¥ sup
α¥α�

Φp1, α; a�1, α�1q �
sup
α¥α�

αpPH � P0q so that P0 ¥ PH constitutes a necessary condition for equilibrium.

PH ¡ PL � P0 ¥ PH gives the desired contradiction thereby completing the proof.
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