Discussion of Pflueger (2023) "Back to the 1980s or Not? The Drivers of Inflation and Real Risks In Treasury Bonds"

> Min Wei Federal Reserve Board

> > May 15, 2023

#### 2023 Financial Markets Conference

The opinions expressed in this presentation are my own and do not reflect the views of the Board of Governors or its staff.

# Motivation



Note: Five-year rolling bond beta based on three-month holding period returns.

May 15, 2023 2 / 19

・ロト ・日 ・ ・ ヨト ・

# Big Picture and contributions of the paper

Empirical facts

- Inflation changed from counter-cyclical to pro-cyclical since around 2000 (Li 2002, Baele et al 2010)
- ► Stock-bond return correlation turned from +ve to -ve since around 2000
- Monetary policy went through structural changes (Clarida Gali Gertler 2000)
- Types and volatilities of shocks to the economy also vary over time (Sims 1980)
- A combination of policy and shock changes might be behind the switching signs (Campbell Pflueger Viceira 2020, Chernov Lochstoer Song 2023, this paper)

# Big Picture and contributions of the paper

- Macro vs finance models
  - Structural macro models successful explaining macro dynamics (eg Smets Wouters 2007)
    - However, asset prices especially risk premiums are typically ignored.
  - Asset pricing models successful explaining asset price dynamics in endowment economies (Campbell Cochrane 1999; Bansal Yaron 2004)
    - However, less so if households can vary investment/labor to smooth consumption (Lettau Uhlig 2000; Rudebusch Swanson 2008)
  - Continued effort to bridge the gap between the two (Uhlig 2007; Rudebusch Swanson 2021; this paper)
- Contributions of this paper
  - Propose a structural model to match both macro dynamics and equity and bond risk premiums.
  - Use the model to interpret shift in equity beta of Treasury bond around 2000.

イロト イボト イヨト イヨト

# Summary of paper

- The model
  - Generalized habit preference a la Campbell Pflueger Viceira (2020)
    - Real rate depends on leads and lags of output gap, as in log-linearized Euler equation in standard macro models
  - Add habit in utility from leisure to dampen labor market adjustment
  - ► Three shocks: risk premium shock, Phillips curve shock, monetary policy shock
- Calibrate to two subsamples: 1979-2001 and 2001-2019
  - Break date based on inflation-output gap correlation
- Findings
  - Pre-2001: Volatile supply and MP shocks; Monetary policy puts more weight on inflation and *little inertia*; inflation expectations adaptive
  - Post-2001: Volatile *demand* shocks; Monetary policy puts *less* weight on inf and *more inertia*; inflation expectations *forward looking*
  - Changing policy rules and changing shocks are both important in explaining changing sign of bond beta

イロト イヨト イヨト イヨト

## #1: Use of asset price information in model calibration

- Asset prices are under-used in calibration/estimation
  - Many parameters taken from studies relying heavily on the pre-2000 sample
  - Sub-period policy parameters and shock vols: calibrated only using macro moments (exception: annual change in FFR)
  - Bond excess return predictability: used to calibrate adaptiveness of inflation expectations
  - Vol of equity returns: used to calibrate the leverage parameter

イロト イヨト イヨト

#### #1: Use of asset price information in model calibration

- Asset price moments not fit very well in the post-2001 sample
  - Bond spread turned negative; bond return vol too low.

|                                                  | 1979.Q4-2001.Q1 |       | 2001.Q2-2019.Q4 |       |
|--------------------------------------------------|-----------------|-------|-----------------|-------|
| Stocks                                           | Model           | Data  | Model           | Data  |
| Equity Premium                                   | 7.33            | 7.96  | 9.15            | 7.64  |
| Equity Vol                                       | 14.95           | 16.42 | 19.29           | 16.80 |
| Equity SR                                        | 0.49            | 0.48  | 0.47            | 0.45  |
| AR(1) pd                                         | 0.96            | 1.00  | 0.93            | 0.84  |
| 1 YR Excess Returns on pd                        | -0.38           | -0.01 | -0.38           | -0.50 |
| 1 YR Excess Returns on pd (R <sup>2</sup> )      |                 | 0.00  | 0.14            | 0.28  |
|                                                  |                 |       |                 |       |
| Bonds                                            |                 |       | _               |       |
| Yield Spread                                     | 2.28            | 1.53  | -0.58           | 2.06  |
| Return Vol.                                      | 15.82           | 14.81 | 2.12            | 9.28  |
| Nominal Bond-Stock Beta                          | 0.86            | 0.24  | -0.09           | -0.31 |
| Real Bond-Stock Beta                             | 0.05            | 0.08  | -0.08           | -0.06 |
| 1 YR Excess Return on slope <sup>*</sup>         | 1.26            | 2.55  | -0.31           | 0.86  |
| 1 YR Excess Return on slope (R <sup>2</sup> )    | 0.01            | 0.07  | 0.01            | 0.02  |
|                                                  |                 |       |                 |       |
| Macroeconomic Volatilities                       |                 |       |                 |       |
| Std. Annual Cons. Growth <sup>*</sup>            | 0.76            | 1.15  | 1.59            | 1.15  |
| Std Annual Change Fed Funds Rate <sup>*</sup>    |                 | 2.26  | 0.65            | 1.40  |
| Std. Annual Change 10-Year Subj. Infl. Forecast* | 0.62            | 0.47  | 0.12            | 0.12  |

Table 2: Model and Data Moments

#### #1: Use of asset price information in model calibration

- Asset price moments not fit very well in the post-2001 sample
  - Equity premium rises in the model unlike in the data:
    - One might expect dovish monetary policy to lead to lower risk premiums (Bianchi Lettau Ludivigson 2022)

1070 04 0001 01

0001 00 0010 04

|                                               | 1979.Q4-2001.Q1 |       | 2001.02-2019.024 |       |
|-----------------------------------------------|-----------------|-------|------------------|-------|
| Stocks                                        | Model           | Data  | Model            | Data  |
| Equity Premium                                | 7.33            | 7.96  | 9.15             | 7.64  |
| Equity Vol                                    | 14.95           | 16.42 | 19.29            | 16.80 |
| Equity SR                                     | 0.49            | 0.48  | 0.47             | 0.45  |
| AR(1) pd                                      | 0.96            | 1.00  | 0.93             | 0.84  |
| 1 YR Excess Returns on pd                     | -0.38           | -0.01 | -0.38            | -0.50 |
| 1 YR Excess Returns on pd $(\mathbb{R}^2)$    | 0.06            | 0.00  | 0.14             | 0.28  |
| Bonds                                         |                 |       |                  |       |
| Yield Spread                                  | 2.28            | 1.53  | -0.58            | 2.06  |
| Return Vol.                                   | 15.82           | 14.81 | 2.12             | 9.28  |
| Nominal Bond-Stock Beta                       | 0.86            | 0.24  | -0.09            | -0.31 |
| Real Bond-Stock Beta                          | 0.05            | 0.08  | -0.08            | -0.06 |
| 1 YR Excess Return on slope <sup>*</sup>      | 1.26            | 2.55  | -0.31            | 0.86  |
| 1 YR Excess Return on slope $(\mathbb{R}^2)$  | 0.01            | 0.07  | 0.01             | 0.02  |
| Macroeconomic Volatilities                    |                 |       |                  |       |
| Std. Annual Cons. Growth <sup>*</sup>         | 0.76            | 1.15  | 1.59             | 1.15  |
| Std Annual Change Fed Funds Rate <sup>*</sup> | 1.64            | 2.26  | 0.65             | 1.40  |
| Std Annual Change 10-Vear Subi Infl Forecast* | 0.62            | 0.47  | 0.12             | 0.12  |

Table 2: Model and Data Moments

May 15, 2023 8 / 19

## #1: Use of asset price information in model calibration

- Asset prices are under-used in calibration/estimation
- Asset price moments not fit very well in the post-2001 sample
- ► Suggestion: calibrate the model using more information from asset prices

- > Paper argues that shift in monetary policy is important in addition to shifting shocks
- However, policy rule coefficients not very different across subsamples

|                          |                | 1979.Q4-2001.Q1 | 2001.Q2-2022.Q2 |
|--------------------------|----------------|-----------------|-----------------|
| MP inflation coefficient | $\gamma^{\pi}$ | 1.35            | 1.10            |
|                          | ,              | (0.22)          | (0.05)          |
| MP output coefficient    | $\gamma^x$     | 0.50            | 1.00            |
|                          |                | (0.32)          | (0.19)          |
| MP persistence           | $\rho^{\iota}$ | 0.54            | 0.80            |
|                          |                | (0.13)          | (0.03)          |

Table 1: Calibration Parameters

- Post-2001 MP rule estimates likely attenuated by the ELB (Kim Pruitt 2017)
  - ▶ ELB also likely bias post-2001 regression coefs using ffr in Figures 2 and A1.
  - Could use surveys or a shadow rate estimate.

< □ > < 同 > < 回 > < 回 >

Pre-2001: changing MP rule or shock vols flips the sign of correlation; both essential.

Figure 7: Counterfactuals for Nominal and Real Bond-Stock Betas

Panel A: Starting from 1979.Q4-2001.Q1 Calibration



イロト イヨト イヨト イヨト

However, post-2001: neither MP rule or shock vols seems essential; could be consistent with pre-2001 monetary policy rule

Figure 7: Counterfactuals for Nominal and Real Bond-Stock Betas

Panel B: Starting from 2001.Q2-2019.Q4 Calibration



- Policy rule coefficients not very different across regimes
- ▶ Post-2001 bond beta could be consistent with pre-2001 monetary policy rule
- Timing of the monetary policy structural break.
  - Paper uses inflation-output gap correlation break point
  - But literature estimating MP rule typically found other break points: eg pre and post Volcker
    - Though Bianchi Ludvigson Ma (2023) find a break at 2001Q3
  - Useful to show more direct evidence on shift in MP rule, taking account of ELB

< □ > < 同 > < 回 > < 回 >

## #2.5: Lessons for the current episode

- Affected by answer to previous question
- Some factors not in the model might be important for the current episode
  - Persistence of the shocks
    - Could affect inflation-output correlation (Keating Valcarcel 2015)
    - Could also affect sign of term premiums (Campbell 1986)
  - Steepening of the Phillips curve despite stable long-run expected inflation
  - Real time data and learning (Orphanides 2003)
- Changing stock-bond correlation not necessarily a sign of shifting monetary policy reaction function

イロト イヨト イヨト

#### #3: Other dimensions of model/data

- Model implies that in the earlier period, term premiums would rise in response to a negative demand shock
  - Risk aversion rises as consumption falls closer to habit, amplifying positive term premium
- Could examine this prediction by looking at how term premiums respond to economic data surprises
  - Here I only looked at yield changes



Note: based on regressions of daily changes in 10-year yield on the surprise components of fourteen major data releases. A value of one indicates that market reaction is close to its sample average.

イロト イヨト イヨト イヨ

# #3: Other dimensions of model/data

 Could compare model predictions on stock-bond correlation conditional on the shock to what's in the data



Note: 2-year rolling correlation of intraday changes from 5 minutes before to 25 minutes after releases.

イロト イヨト イヨト イヨ

#### #3: Other dimensions of model/data

- Paper observed that TIPS beta changed sign but by much less, suggesting mostly an inflation phenomenon.
  - Extended the sample using DKW real yield: shifts comparable to nominal.
- > Term structure of correlations can also speak to the persistence of shocks



Note: 10-year rolling correlations of monthly observations of 3-month, 1-year and 2-year holding period returns. Real bond yields from D'Amico Kim Wei 2018.

イロト イポト イヨト イヨ

# #4: Miscellaneous

Some modeling assumptions seem strong or needs more justifications

- Output gap assumed to be an exponential average of past consumption
- ▶ The Phillips curve shock added to the equation but only loosely motivated.
- Role of adaptive inflation expectations needs more explanation. Should it also affect the IS equation?
- Some other model implications are worth exploring
  - What are the properties of hours worked with habit in leisure utility?
  - How do model-implied real term premiums look like?
- Could extend the sample back to pre-Volcker period with more significant shift in monetary policy reaction function

- Important question; unites various strands of literature.
- Part of impressive research agenda
- Suggestions
  - Use more asset price information in calibrating the model
  - Reassess the importance of a shift in the monetary policy rule
  - Explore other dimensions of the model and the data

イロト イヨト イヨト イヨト