Headline Results

January 2024 Survey of Business Uncertainty

1. Regarding office space, companies on the SBU panel report that roughly 10 percent of their current space is going unused (Slides 7-8).
2. Sales and employment growth expectations continue to edge lower for U.S. firms. (Slides 4 & 5)
3. Firms also remain more uncertain about future sales growth than before the pandemic. (Slide 4)
About the Survey

The Survey of Business Uncertainty (SBU) is fielded each month by the Federal Reserve Bank of Atlanta. It is designed, tested, and refined in cooperation with Nick Bloom of Stanford University and Steven Davis of the Hoover Institution and the University of Chicago Booth School of Business. Bloom and Davis received research support from the Sloan Foundation and the U.S. National Science Foundation to support their work on this project. Davis also received research support from Chicago Booth.

The SBU questionnaire goes to about 1500 panel members, who occupy senior finance and managerial positions at U.S. firms. We contact panel members each month by email, and they respond via a web-based instrument.

Survey questions pertain to current, past, and future outcomes at the respondent’s firm. Our primary objective is to elicit the respondent’s subjective forecast distributions over own-firm future sales growth rates and employment levels. We also ask special questions on timely topics.

For more information on survey design and methodology, please refer to the resources on the SBU page and “Surveying Business Uncertainty,” published in the Journal of Econometrics and also available as NBER Working Paper 25956.
Nominal sales growth remains higher than before the pandemic but has fallen over the past year. Recent employment growth is in line with pre-pandemic growth.

NOTE: Calculated using monthly data through January 2024. Realized growth rate series for sales revenue and employment are activity-weighted averages of firms’ reported (look-back) growth rates over the past year (specifically, the previous four quarters for sales revenue and previous 12 months for employment).

Source: Survey of Business Uncertainty conducted by the Federal Reserve Bank of Atlanta, Stanford University, and the University of Chicago Booth School of Business. For more information, see “Surveying Business Uncertainty” by David Altig, Jose Maria Barrero, Nick Bloom, Steven J. Davis, Brent Meyer, and Nick Parker, NBER Working Paper No. 25956, February 2020.
Sales revenue growth expectations have dropped in recent months. Firms remain more uncertain about future revenue growth than they were before the pandemic.

Source: Survey of Business Uncertainty conducted by the Federal Reserve Bank of Atlanta, Stanford University, and the University of Chicago Booth School of Business. For more information, see “Surveying Business Uncertainty” by David Altig, Jose Maria Barrero, Nick Bloom, Steven J. Davis, Brent Meyer, and Nick Parker, NBER Working Paper No. 25956, February 2020.

NOTE: The charts show smoothed series.
Expected employment growth has dropped in recent months. Uncertainty about employment growth has returned to pre-pandemic levels.

SOURCE: Survey of Business Uncertainty conducted by the Federal Reserve Bank of Atlanta, Stanford University, and the University of Chicago Booth School of Business. For more information, see "Surveying Business Uncertainty" by David Altig, Jose Maria Barrero, Nick Bloom, Steven J. Davis, Brent Meyer, and Nick Parker, NBER Working Paper No. 25956, February 2020.

NOTE: The charts show smoothed series.
The distribution of sales growth rates across firms remains wider than before the pandemic.

January 2017–January 2024

Distribution of Sales Growth Rates over the Past Year

NOTES: Calculated using monthly data through January 2024. The chart shows smoothed series. Lines show percentiles of the activity-weighted distribution of firm-level sales growth rates over the past year.

Source: Survey of Business Uncertainty conducted by the Federal Reserve Bank of Atlanta, Stanford University, and the University of Chicago Booth School of Business.
Currently, what percentage of the physical space that your firm uses falls into the following categories? Please only include physical space owned or leased by your firm (do not include use of home offices, for example). Please answer in terms of the area of physical space rather than value of or expenditure on different types of physical space. Values should sum to 100%.

Note: Responses were collected between 11-22 December 2023. Responses are weighted by firms’ level of employment.
Companies on the SBU panel say that roughly 10 percent of the office space they have is unused.

What percentage of floor space that your firm owns or leases is vacant or unused? Please answer separately for each category. Enter "0" if your firm uses all the space in the category.

Note: Responses were collected between 11-22 December 2023. Responses weighted by firms’ level of employment. This question was given only to respondents who said that their firm owns/leases the given type of space.
Most firms on the SBU panel said they were planning on hosting a holiday party in December.

Question 1: Is your firm hosting a holiday party this month?
Question 2: Next, think back to previous years. Did your firm host a holiday party in...[2019/2020/2021/2022]?

Note: Responses were collected between 11-22 December 2023. Responses are equally weighted.
Appendix: Technical Information

Computing Moments of the Firm-Level Subjective Forecast Distributions

We calculate the first and second moments of the subjective growth rate distributions of employment and sales revenue over the next 12 months or four quarters, as appropriate. Following standard practice in the literature on business-level dynamics, we calculate the growth rate of x from t to t+1 as \(g_t = 2(x_t - x_{t-1})/x_t + x_{t-1} \).

Employment

Employment

- \(CEMP = \text{firm's current employment level, as reported by the respondent} \)
- \(FEMP_t = \text{employment 12 months hence in scenario } i, \text{ for } i = 1, 2, 3, 4, 5 \)
- \(p_i = \text{the associated probabilities, } i = 1, 2, 3, 4, 5 \)

Scenario-Specific Growth Rates

Scenario-Specific Growth Rates

\[V_{EGr} = (1 - p_i)EGr \]

\[S_{EGr} = \frac{1}{\sum_i p_i} \left(EGr - \bar{EGr} \right) \]

First and Second Moments of the Subjective Growth Rate Forecast Distribution

First and Second Moments of the Subjective Growth Rate Forecast Distribution

- \(\bar{EGr} = \sum_i p_i EGr \)
- \(\bar{EGr} = \sum_i p_i EGr - \bar{EGr} \)

Subjective Expectations and Uncertainty Indices

We construct a monthly activity-weighted expectations (first-moment) index for employment growth and sales growth looking one year ahead. We also construct a monthly activity-weighted uncertainty (second-moment) index for the employment growth and sales growth looking one year ahead.

- **First and Second Moments of the Subjective Growth Rate Distribution**
 - In month \(t \), the index for employment (sales) takes a value equal to the activity-weighted average of subjective mean employment (sales) growth rates looking one year hence (\(Mean(EGr) \)), averaging across all firms responding that month. We compute these subjective mean growth rates as described on slide 3, and winsorize them at the first and 99th percentiles before using them to construct the index.
 - The month-index of year-ahead subjective uncertainty for employment (sales) growth is the activity-weighted mean of \((SD(EGr)) \) values across firms responding in month \(t \). We compute these subjective standard deviations over growth rates as described on slide 3, and winsorize them at the first and 99th percentiles before inputting them into the index construction formula.
 - When constructing first- and second-moment employment growth indexes, we weight firm's subjective mean growth rate expectation and uncertainty by the average of its month-t employment (CEmp) and its expected employment level (EEmp). We top-code these weights at 500 to diminish the influence of outliers among very large firms.
 - When constructing first- and second-moment sales revenue growth indexes, we weight firms' subjective mean growth rate expectation and uncertainty by the average of its month-t sales revenue (CSale) and its expected sales level (ESale). We winsorize these activity-weights at the 1st and 80th percentile.
 - Finally, we smooth our topic-specific indices by taking a moving average. We set the window for the moving average to 2 or 3 months, to match the panel structure of our survey.

Topic-specific Expected Excess Reallocation Indices

We construct forward-looking indices of excess job and sales revenue reallocation. These series measure the volume of cross-firm reallocation in economic activity above the reallocation required to support aggregate growth. For ease of exposition, we often refer to these as simply “reallocation rates”.

- **First**. In each month \(t \), we compute the activity-weighted average of own-firm expected gross job creation and destruction rates, which boils down to the activity-weighted average of the absolute value of subjective mean growth rates \(Mean(EGr) \).
 - Then, in each month \(t \), we compute the absolute value of the activity-weighted average of own-firm expected employment growth \(Mean(EGr) \). This is effectively the absolute value of the employment growth expectations index in month \(t \).
- We then obtain the expected job reallocation rate index value for month \(t \) by subtracting the outcome of the second bullet from the first. Letting \(w_{it} \) be firm \(i \)'s activity weight in month \(t \),

\[\text{Expected Job Reallocation Rates}_t = \sum_i w_{it} \cdot |Mean(EGr)| - \sum_i w_{it} \cdot Mean(EGr) \]

- Analogously, the expected sales revenue reallocation rate index in month \(t \) is the difference between the activity-weighted average of absolute expected sales growth rates, minus the absolute value of the average activity-weighted growth rate:

\[\text{Expected Reallocation Rate For Sales Revenue}_t = \sum_i w_{it} \cdot |Mean(SaleGr)| - \sum_i w_{it} \cdot Mean(SaleGr) \]

- We compute the subjective mean growth rates \(Mean(EGr) \) and \(Mean(SaleGr) \) as described on slides 18-21, and winsorize them at the 1st and 99th percentiles before using them to construct the index.
- Firm \(i \)'s activity weight \(w_{it} \) is the average of its month-t employment or sales level (CEmp, or CSale) and its expected employment or sales level twelve months hence (EEmp, or ESale). We top-code these weights at 500 for employment and at the 80th percentile for sales to diminish the influence of outliers among very large firms.
Appendix: Subjective Forecast Distribution of Future Sales Growth Rates at a One-Year Horizon

Source: Survey of Business Uncertainty conducted by the Federal Reserve Bank of Atlanta, Stanford University, and the University of Chicago Booth School of Business.

NOTES: Calculated using monthly data through January 2024. The charts show smoothed series. This is a plot of the subjective distribution for the representative firm’s future sales growth rates over a 4-quarter look-ahead horizon. To calculate this distribution, we pool over all firm-level subjective forecast distributions in the indicated month and weight each firm by its activity level. Then we use the probabilities assigned to each possible future sales growth rate to obtain activity-weighted quantiles of the future sales growth rate distribution.
Source: Survey of Business Uncertainty conducted by the Federal Reserve Bank of Atlanta, Stanford University, and the University of Chicago Booth School of Business.