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Abstract: In this paper we investigate the recently documented trading profits based on technical trading rules
in an asset pricing framework that incorporates jump risk and time-varying risk premia. Following Brock,
Lakonishok, and LeBaron (1992), we apply popular technical trading rules to the daily S&P 500 index over a
long period of time. Trading profits are examined using bootstrap simulation to address distributional anomalies.
We estimate a variety of asset pricing models, including the random walk, autoregressive models, a combined
jump diffusion model, and a combined model of jump-diffusion and autoregressive conditional heteroscedasticity.
Technical trading profits are shown to be statistically significant for the pure diffusion models and autoregressive
models, yet become less significant when jump risk is incorporated into the model and virtually disappear for an
asset pricing model that incorporates both jump risk and time-varying risk premia. The empirical evidence
suggests that technical trading profits could be fair compensation for the risk of price discontinuity as well as
time-varying risk premia of asset returns. Alternatively, technical trading profits provide a test of specification
of asset pricing models; in this vein the evidence provides support for the incorporation of jump risk into asset
pricing models.
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Jump Risk, Time-Varying Risk Premia, and Technical Trading Profits

 Introduction 

Empirical evidence on short term stock and foreign exchange data suggests that stock

returns or exchange rate changes are not stationary diffusion processes. They display

leptokurtosis and skewness. Finding the right distributional assumption for these series is

important since the underlying return generating process for equity returns and foreign exchange

rates are critical in pricing financial products. Theoretically, the deviation from normality of the

return process can be accounted for by assuming either a mixture of stationary distributions, such

as two normal distributions with different means and variances, or a mixture of a normal and jump

process, or alternatively, a distribution such as the normal distribution with time-varying

parameters.

 Jarrow and Rosenfeld (1984) and Ball and Torous (1985) have found evidence that daily

stock returns are characterized by lognormally distributed jumps. Akgiray and Booth (1988)

suggest a mixed jump-diffusion process for exchange rate changes. On the other hand, models

with autoregressive conditional heteroscedasticity, first proposed by Engle (1982), are popular

alternatives for specifying the return processes. Jorion (1988) uses a combination of a mixture of

jump-diffusion process and ARCH process to estimate weekly and monthly US stock index and

US $/DM exchange rate series, using maximum likelihood estimation. He finds that exchange rate

changes exhibit systematic jump risk. More recently, Brorsen and Yang (1994) use combinations

of a jump-diffusion process and GARCH type processes to estimate US stock index series. They

find that nonlinear dependency is not removed after all the specification adjustments. 

A common feature of the above-mentioned tests is that, to determine the goodness of fit

of the specifications, for either nested or nonnested tests, the authors use either the likelihood

ratio test, or adjusted forms of the test such as the AIC (Akaike Information Criterion) or the

SBC (Schwartz Baysian Criterion). While these parametric test techniques may be rigorous, other

means of testing the model’s consistency with the sample data may shed more light on this issue,

especially considering the residual nonlinear dependency observed in the sample data under the

above specifications.
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1. Technical trading rules.

Recently, a considerable amount of work has provided support for the value of technical

trading rules. In Brown and Jennings (1989), for instance, it is demonstrated that under a noisy

rational expectations equilibrium model in which a current price does not fully reveal private

information due to heterogeneously informed market participants, past and current prices together

enable uninformed price-taking investors to make more precise inferences about the signals. In

empirical work, Brock, Lakonishok and LeBaron (1992) use bootstrap simulations of various null

asset pricing models and find that simple technical rule profits cannot be explained away by the

popular statistical models of stock index returns. Levich and Thomas (1993) use the same

bootstrap simulation technique to present evidence on the profitability and statistical significance

of technical trading rules in the foreign exchange market with currency futures data.

The existing evidence on the profitability of technical rules challenges the traditional

version of the efficient market hypothesis. However, given the fact that jump risk and time varying

volatility are observed in both equity and currency markets, in order to obtain a proper evaluation

of technical trading rules, we need to reexamine profits in the context of these more complex

processes. It is consistent with the efficient market hypothesis to have trading profit that

compensates for risk within the correctly specified asset pricing model. On the other hand, if the

technical trading profits, adjusted for risk, are no longer significant, then the profits are

explainable by the null model. This would indicate that the null model under which the trading rule

is examined is correctly specified. This approach provides such a specification test of asset pricing

models.

2. Bootstrap simulation.

Brock, Lakonishok and LeBaron (1992) provide the first work that combines technical

analysis, evaluation of asset pricing models, and the bootstrap methodology. Bootstrap methods

(Efron 1979) provide simulated empirical distributions for the profits under various null models,

which can be compared with actual profits. This strategy addresses the distributional anomalies of

equity returns and exchange rate changes discussed before, such as leptokurtosis, autocorrelation,

conditional heteroscedasticity, and changing conditional means. In addition, we can develop a
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joint test of significance for a set of trading rules by utilizing bootstrap distributions for these

tests. 

3. The mixed jump-diffusion model. 

In Brock, Lakonishok and LeBaron (1992), technical trading profits are found to be

statistically profitable when applied to daily DJIA series over a period of 90 years. Furthermore,

these profits are not explainable under a variety of null models, including the random walk model,

AR(1), GARCH-M model, and exponential GARCH model. More recently, Kho (1996) provides

evidence on time varying risk premia using similar tests on weekly currency futures data over a

period of 11 years. He finds that significant technical trading profits on currency futures can be

explained away by a GARCH-M model of the currency futures price process. While GARCH type

models capture time varying risk premia of asset returns, they do not address the possibility of

discontinuities in prices, or jump risk.

Apart from the empirical evidence on the existence of jump risk, the mixed jump-diffusion

model describes certain institutional features of the asset markets quite well. For stocks, for

instance, strategic trading of information traders are analyzed by Kyle (1985). In this model,

information is gradually incorporated into prices through trading in a specialist market. This

process is generally continuous. There are also unanticipated news announcements about major

macroeconomic indicators, such as the interest rates, that have a direct impact on the stock index,

or firm-specific “events”, which affects individual stock prices. The price adjustment in the latter

case would be discontinuous. In a typical jump-diffusion model, the Wiener (diffusion) process

captures continuous fluctuations in stock prices due to strategic trading by informed traders,

trading by liquidity traders, and market microstructure effects; an independent compound Poisson

(jump) process models the discrete jumps in stock prices due to unanticipated information

released to the public. 

For foreign exchange markets, the jump factor has even stronger institutional appeal. The

diffusion process captures the speculative and liquidity trading of the currency, whereas the jump

process captures two possibilities: first, when major macroeconomic news break out; second,

when the central bank revalues the currency for reasons such as realignments of parity.

II. The null models and moving average trading rules.
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In light of the previous literature and institutional attributes of stock and currency markets

discussed in the previous section, we consider the following model to address both jump risk and

time varying risk premia:

In a standard jump diffusion process, let , where P is either the dollar price

of the foreign currency or the dollar price of the normalized stock market index. We assume that

. Then in discrete time,   where  and ln Y

~ N( ). The Poisson process q has parameter , and Y is the jump size.

To combine ARCH(1) into the model, we respecify  as

where .

To test the profitability of technical trading rules, we use the commonly used moving

average oscillator rule. This technical trading rule is applied to a daily stock index series (the S&P

500). The moving average rule is intended to smooth out the noise in a price series. Since a long-

term moving average of past prices responds more slowly than the price series, it is intended to be

below the price during the early stage of a bull market and above the price during the early stage

of a bear market. To exploit this pattern, signals are generated based on recent price levels and the

long-term moving average, computed as  , where P is the asset price at time t. A

moving average rule is denoted by (short, long, band). For example, a (2, 150, 1) rule generates a

buy (sell) signal when the two most recent daily prices cross the band of the  150 day long term

moving average from below (above), with a band of 1% centered around the long term average.

III. Results.
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The results are based on the data of S&P 500 daily index series from July 4, 1962, to

December 30, 1994. Descriptive statistics in Table 1 show that the daily log price changes exhibit

excessive kurtosis and skewness, while the first order serial correlation coefficient is significant

and positive. We use a (1, 50, 1) rule in our tests. Thus the length of the moving average is 50

days, the current day price is compared with the mean of the moving average, and the band is 1%.

Table 2 shows the trading profits based on the (1, 50, 1) rule. Over the 32 year period,

3907 buy signals are generated and 2325 sell signals are generated. The “buy-sell” portfolio has a

mean value of one day return of 0.047% . The t statistic, which tests the difference of the mean

(buy - sell ) from the unconditional difference, which is zero, equals 2.07, significant at the 5%

level.

The estimation-based bootstrap method (Freedman and Peters 1984) simulates empirical

error distributions generated from a null model. To adjust for heteroscedasticity, the resampling

algorithm is applied to the standardized residuals. The i.i.d. standardized residuals are sampled

with replacement. We  estimate the following three null models: AR(1), jump-diffusion, and jump-

diffusion with ARCH(1), using maximum likelihood estimation. The parameters are reported in

Table 4. The result shows that the jump factor is significant. 

To illustrate the simulation process for the jump diffusion model, bootstrap simulations 

are conducted as follows. With the initial value of a price series, we obtain unobservable errors

recursively. We then obtain the simulated return series as follows. First, we generate a random

number q from a Poisson distribution with a parameter . Second, we obtain q independent

normal variates, each with a mean of  and variance . Third, the sample for the diffusion

process is generated using the normal random number generator with a mean of ( ) and

variance . Fourth, the normal random variables from the compound Poisson process and the

diffusion processes are added to obtain a single observation. The simulated returns are then

exponentiated back to a simulated price series (since the trading rule is based on prices, not

returns). We replicate the return series 1000 times. The fraction of the replications which

generates a return larger than that from the actual series is considered a simulated p-value.
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Table 3 reports the major finding of the paper. For the AR(1) model, the fraction of

simulated (buy-sell) returns that are greater than the actual returns is 0.009. This indicates that the

actual trading profits, with a simulated p-value of 0.009, is highly significant under the AR(1)

model. For the jump-diffusion model, the fraction (simulated p-value) is 0.090, with indicates that

under a jump-diffusion model, trading profits are no longer significant at conventional levels.

Finally, for the combined jump-diffusion-ARCH(1) model, the fraction becomes 0.425. Thus

under this combined model the significance of technical trading profits disappears.

IV. Concluding Remarks.

Both time varying risk premia and jump risk are potential explanations for what looks like

excess profits to technical analysis. We utilize technical trading profits and bootstrap simulation to

test alternative null models of asset returns. When the technical trading profits become

insignificant in a simulated distribution under the null model, then the profits may as well be

interpreted as fair compensation for the time varying risk or jump risk incorporated in the null

models. This in turn provides a test of the specifications of the null models. Using stock index

data, we show that technical trading rules generate significant trading profits, assuming stock

returns are a simple diffusion process. However, when we generate a simulated return distribution

under a jump-diffusion model and a combined jump-diffusion and ARCH(1) model, we find that

the actual trading profits are explained away. This suggests that jump risk, or a combination of

jump risk and time varying risk premia, may be appropriate specifications for asset return

generating processes for major stock index series.
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Table 1. Descriptive Statistics for the Sample of S&P 500 Return Series. Return is obtained by
the log difference of prices. From 620704 to 941230. The total sample size is 8180.

mean standard deviation skewness kurtosis

0.000257 0.008823 -2.17 61.09

Autocorrelations:

lag 1 lag 2 lag 3 lag 4 lag 5

0.109* -0.02 -0.00 -0.02 0.02

 * denotes significance at 5% level.

Table 2. Profits from moving average (1,50,1) rule applied to daily S&P 500 stock index from
1962 to 1994. The number of buy and sell signals are generated over the entire time period. The
T-statistic is calculated in accordance with Brock, Lakonishok and Lebaron (1993).

No. of Buys No. of Sells Percent of Percent of buy - sell T-value for 
positive buy positive sell mean returns buy - sell
trades trades per day return

3907 2325 53.1 50.2 0.000476 2.076

Table 3. Simulation tests from null models bootstraps for 1000 replications. The “buy-sell
fraction” is the fraction of trading profits based on simulated returns that are greater than the
actual profits. It is the simulated p-value for the actual trading profits.

Models Buy-Sell fraction

AR(1) 0.009

Jump diffusion 0.090

Jump diffusion with ARCH(1) 0.425

Note: the parameter estimates for the models are provided in Table 4.
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Table 4. Maximum likelihood estimates of the jump-diffusion model and the jump-diffusion
ARCH(1) model on the S&P 500 index returns from 1962 to 1994. We use Bernoulli
approximation to estimate the jump-diffusion model. B(q) is the Bernoulli variable that equals 1
with probability q. The BHHH optimization method is used to obtain the ML estimates.

Jump diffusion model: 
where  ~ N( ).

; ; q=0.08968, (t=13.26); 

; . Log likelihood = 27872.

Jump diffusion - ARCH(1) model:
where , and lnY same as

above.

 

; q=0.171, (t=12.48).

Log likelihood=28048.


