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Introduction

In the empirical asset pricing literature, the popular two-pass cross-sectional regression (CSR)

methodology developed by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973) is

often used for estimating risk premia and testing pricing models that relate expected security

returns to security betas on economic factors (beta pricing models). Although there are many

variations of this two-pass methodology, its basic approach always involves two steps. In the first

pass, the betas of the test assets are estimated using the usual ordinary least squares (OLS) time

series regression of returns on some common factors. In the second pass, the returns on test assets

are regressed on the estimated betas obtained from the first pass. By running this second-pass CSR

on a period-by-period basis, we obtain time series of the intercept and the slope coefficients. The

average values of the intercept and the slope coefficients are then used as estimates of the zero-beta

rate and the risk premia.

Usually, asset betas are defined as the OLS slope coefficients in the multiple regression of asset

returns on factors and are referred to as multiple regression or multivariate betas. However, there

is a potential issue with the use of multiple regression betas: unless the factors are uncorrelated,

the beta of an asset with respect to a particular factor in general depends on what other factors are

included in the first-pass time series OLS regression. As a result, a factor can possess additional

explanatory power for the cross-sectional differences in expected returns but yet have a zero risk

premium in a model with multiple factors. This makes it problematic to use the risk premium

of a factor for the purpose of model selection. To overcome this problem, Chen, Roll, and Ross

(1986) and Jagannathan and Wang (1996, 1998) define the beta of an asset with respect to a given

factor as the OLS slope coefficient in a simple regression of its return on the factor. These betas

are normally referred to as simple regression or univariate betas. In models with simple regression

betas, adding or deleting a factor in a model will not change the values of the betas corresponding

to the other factors and selecting models based on risk premia becomes more meaningful.1

Jagannathan and Wang (1998) present an asymptotic theory for models with simple regression

betas.2 However, their asymptotic results rest on the assumption that expected returns are exactly

1Alternatively, as emphasized by Cochrane (2005) and Kan, Robotti, and Shanken (2009), one can use covariance
risks instead of beta risks in the CSR.

2An asymptotic theory for models with simple regression betas is indeed necessary. Although each of the two beta
types (as well as the risk premia) is a linear transformation of the other, Jagannathan and Wang (1998) show that
the standard errors obtained by applying the transformation to the asymptotic variance for models with multiple
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linear in the betas, i.e., the beta pricing model is correctly specified. It is difficult to justify this

assumption when estimating the zero-beta rate and risk premia parameters for many different

models because some (if not all) of the models are bound to be misspecified. Since asset pricing

models are, at best, approximations of reality, it is inevitable that we will often, knowingly or

unknowingly (since asset pricing tests have limited power), estimate an expected return relation

that departs from exact linearity in the betas. The main contribution of this paper is to propose,

under general distributional assumptions, misspecification robust asymptotic standard errors of the

estimated zero-beta rate and risk premia for models with simple regression betas. A nice feature of

our robust standard errors is that they are applicable to both correctly specified and misspecified

models. Our analysis generalizes and simplifies the results of Jagannathan and Wang (1998) that are

derived under the assumption that the beta pricing model is correctly specified. In addition, under

a multivariate elliptical assumption, we provide simple expressions for the asymptotic variances of

the zero-beta rate and risk premia estimates. In the case of the generalized least squares (GLS)

CSR estimators, we prove that that the asymptotic variances are always larger when the model

is misspecified. The difference depends on the extent of model misspecification as well as on the

correlation between factors and returns. We show that the misspecification adjustment term can

be very large when the underlying factor is poorly mimicked by asset returns, a situation that

typically arises when the factors are macroeconomic variables.

After describing the econometric methodology, we provide an empirical example to demonstrate

the relevance of our results. We focus on the conditional capital asset pricing model (CAPM) of

Lettau and Ludvigson (2001), where the scaling variable is the lagged consumption-wealth ratio

(CAY). We examine whether model misspecification substantially affects the standard errors of the

risk premia estimates that are based on simple regression betas. When using the Jagannathan and

Wang (1998) standard error, we find that the scaled market factor (i.e., the market return multiplied

by CAY) is significantly priced in the OLS and weighted least squares (WLS) cases. However, using

our misspecification robust standard errors, the t-ratios becomes substantially smaller and lead us

to conclude that the scaled market factor is not priced.

The rest of the paper is organized as follows. Section 1 presents an asymptotic analysis of the

zero-beta rate and risk premia estimates for models with simple regression betas under potential

regression betas would be incorrect for models with simple regression betas.
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model misspecification. Section 2 presents a brief empirical example. The final section summarizes

our findings and the appendix contains proofs of all propositions.

1. Asymptotic Analysis under Potentially Misspecified Models

1.1 Population Pricing Errors and Risk Premia

Let f be a K-vector of factors and R a vector of net returns on N test assets. We define Y = [f ′, R′]′

and its mean and covariance matrix as

µ = E[Y ] ≡

[
µ1

µ2

]
, (1)

V = Var[Y ] ≡

[
V11 V12

V21 V22

]
, (2)

where V is assumed to be positive definite.

To prepare for our presentation of the CSR with simple regression betas, we first describe the

CSR that makes use of multiple regression betas. The multiple regression betas of the N test assets

with respect to the K factors are defined as β = V21V
−1
11 . In addition, we denote the covariance

matrix of the residuals of the N test assets by Σ = V22 − V21V
−1
11 V12.

When the proposed K-factor beta pricing model is correctly specified, the expected returns of

the test assets are exactly linear in β. As a result, the pricing errors, e, of the N test assets are

e ≡ µ2 − Xγ = 0N , (3)

where X = [1N , β] is assumed to be of full column rank, 0N is an N -vector of zeros, 1N is an

N -vector of ones, and γ = [γ0, γ ′
1]
′ is a vector consisting of the zero-beta rate (γ0) and risk premia

on the K factors (γ1).3 However, when the proposed model is misspecified, the pricing error vector

of the model will be nonzero regardless of the choice of γ. In that case, it makes sense to choose γ

to minimize some form of aggregate pricing errors. Denoting by W an N × N symmetric positive

definite matrix, we define the (pseudo) zero-beta rate and risk premia as the choice of γ that

minimizes the quadratic form of pricing errors:

γW ≡
[

γW,0

γW,1

]
= argminγ(µ2 − Xγ)′W (µ2 − Xγ) = (X ′WX)−1X ′Wµ2. (4)

3Note that constant portfolio characteristics can be easily accommodated in the CSR without creating any addi-
tional complication. The analysis that includes asset characteristics is available upon request.
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Under this choice of γ, the pricing errors of the N assets are given by

eW = µ2 − XγW . (5)

As suggested by Chen, Roll, and Ross (1986) and Jagannathan and Wang (1996, 1998), there

are cases in which it is preferable to use simple regression betas instead of multiple regression betas

as regressors in the second-pass CSR. The simple regression betas of the N portfolios with respect

to the K factors are defined as β∗ = V21D
−1, where D = Diag(V11) is a diagonal matrix of the

diagonal elements of V11. Letting X∗ = [1N , β∗], the zero-beta rate and the risk premia associated

with the simple regression betas are defined as

γ∗
W ≡

[
γ∗

W,0

γ∗
W,1

]
= argminγ∗(µ2 − X∗γ∗)′W (µ2 − X∗γ∗) = (X∗′WX∗)−1X∗′Wµ2. (6)

Compared with the usual γW in (4), we can easily see that

γ∗
W,0 = γW,0, γ∗

W,1 = DV −1
11 γW,1. (7)

In addition, it is easy to see that

e∗W = µ2 − X∗γ∗
W = µ2 − XγW = eW , (8)

so that the pricing errors from this alternative second-pass CSR are the same as those in (5).

It should be emphasized that unless the model is correctly specified, γ∗
W and eW depend on the

choice of W . Popular choices of W in the literature are W = IN (OLS CSR), W = V −1
22 (GLS

CSR),4 and W = Σ−1
d (WLS CSR), where Σd = Diag(Σ). In our subsequent analysis, the choice of

W is often clear from the context, and we suppress the subscript W from γ∗
W and eW when there

is no source of confusion.

1.2 Sample Estimates of Pricing Errors and Risk Premia

Let Yt = [f ′
t, R′

t]′, where ft is the vector of K proposed factors at time t and Rt is a vector of

net returns on the N test assets at time t. Throughout the paper, we assume the time series Yt is

jointly stationary and ergodic with finite fourth moment. Suppose we have T observations on Yt

4For the GLS CSR, γ∗
W stays the same whether we use V −1

22 or Σ−1 as the weighting matrix.
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and denote the sample moments of Yt by

µ̂ ≡
[

µ̂1

µ̂2

]
=

1
T

T∑

t=1

Yt, (9)

V̂ ≡

[
V̂11 V̂12

V̂21 V̂22

]
=

1
T

T∑

t=1

(Yt − µ̂)(Yt − µ̂)′. (10)

The estimated simple regression betas are given by β̂∗ = V̂21D̂
−1. When the weighting matrix W

is known (say OLS CSR), we can estimate γ∗
W in (6) by

γ̂∗ = (X̂∗′WX̂∗)−1X̂∗′Wµ̂2, (11)

where X̂∗ = [1N , β̂∗].

In cases like the GLS and WLS CSRs, the weighting matrix W involves unknown parameters.

Therefore, we need to use a consistent estimate of W , say Ŵ , as the weighting matrix. For example,

we use Ŵ = V̂ −1
22 for the GLS CSR and Ŵ = Σ̂−1

d for the WLS CSR, where Σ̂d is a diagonal matrix

of the diagonal elements of Σ̂ = V̂22 − V̂21V̂
−1
11 V̂12. When Ŵ is used as the weighting matrix in the

second-pass CSR, the estimator of γ∗
W is given by

γ̂∗ = (X̂∗′ŴX̂∗)−1X̂∗′Ŵ µ̂2. (12)

Accordingly, the sample pricing errors of the N test assets are given by

ê = µ̂2 − X̂∗γ̂∗. (13)

1.3 Asymptotic Distribution of γ̂∗ under Potentially Misspecified Models

When deriving the asymptotic distribution of γ̂∗, Jagannathan and Wang (1998) in their Theorem 7

assume that the model is correctly specified. However, it is rather difficult to justify the use of

asymptotic results under correctly specified models for all cases, especially when many models

are estimated and some of them are rejected by the data. Recently, three papers have started

to investigate the asymptotic distribution of γ̂ under potentially misspecified models. Under the

i.i.d. normality assumption, Hou and Kimmel (2006) derive the asymptotic distribution of γ̂ for the

case of GLS CSR with a known value of γ0, and Shanken and Zhou (2007) present the asymptotic

results for the OLS, GLS, and WLS cases with γ0 unknown. Kan, Robotti, and Shanken (2009)
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relax the normality assumption of Shanken and Zhou (2007) and present the asymptotic distribution

of γ̂ under general distributional assumptions. However, all three papers only deal with CSRs with

multiple regression betas and their results cannot be used for CSRs with simple regression betas. In

order to fill this gap in the literature, the following proposition presents the asymptotic distribution

of γ̂∗ under potentially misspecified models.

Proposition 1. Under a potentially misspecified model, the asymptotic distribution of γ̂∗ is given

by
√

T (γ̂∗ − γ∗) A∼ N(0K+1, V (γ̂∗)), (14)

where

V (γ̂∗) =
∞∑

j=−∞
E[hth

′
t+j ]. (15)

To simplify the ht expressions for the different CSRs, we define H∗ = (X∗′WX∗)−1, A∗ =

H∗X∗′W , γ∗
t = A∗Rt, z∗t = [0, (ft −µ1)′D−1]′, Dt = Diag((ft−µ1)(ft−µ1)′), G∗

t = [β∗Dt− (Rt −

µ2)(ft−µ1)′], and ut = e′W (Rt−µ2), where W equals V −1
22 for the GLS case and Σ−1

d for the WLS

case.

(1) For the known weighting matrix W case,

ht = (γ∗
t − γ∗) + A∗G∗

tD
−1γ∗

1 + H∗z∗t ut. (16)

(2) For the GLS case,

ht = (γ∗
t − γ∗) + A∗G∗

t D
−1γ∗

1 + H∗z∗t ut − (γ∗
t − γ∗)ut. (17)

(3) For the WLS case,

ht = (γ∗
t − γ∗) + A∗G∗

t D
−1γ∗

1 + H∗z∗t ut − A∗ΨtΣ−1
d e, (18)

where Ψt = Diag(εtε
′
t) and εt = Rt − µ2 − β(ft − µ1).

When the model is correctly specified, we have

ht = (γ∗
t − γ∗) + A∗G∗

tD
−1γ∗

1 . (19)
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It is easy to show that our expressions in Equations (15) and (19) coincide with the expression

given by Jagannathan and Wang (1998) in their Theorem 7. However, our expression for V (γ̂∗)

under the correctly specified model represents a substantial simplification over the one provided

by Jagannathan and Wang (1998). In addition, from our Proposition 1 it is immediately clear

how to construct a consistent estimator of V (γ̂∗). For example, in the known W case, this can be

accomplished by replacing ht with

ĥt = (γ̂∗
t − γ̂∗) + Â∗Ĝ∗

t D̂
−1γ̂∗

1 + Ĥ∗ẑ∗t ût, (20)

where Ĥ∗ = (X̂∗′WX̂∗)−1, Â∗ = Ĥ∗X̂∗′W , γ̂∗
t = Â∗Rt, ût = ê′W (Rt − µ̂2), D̂ = Diag(V̂11),

D̂t = Diag[(ft − µ̂1)(ft − µ̂1)′], Ĝ∗
t = [β̂∗D̂t − (Rt − µ̂2)(ft − µ̂1)′], and ẑ∗t = [0, (ft − µ̂1)′D̂−1]′.

Similarly, one needs to replace the population quantities in Equations (17)–(18) with their sample

counterparts in order to obtain a consistent estimator of V (γ̂∗) for the GLS and WLS cases. In

particular, if ht is uncorrelated over time, then we have V (γ̂∗) = E[hth
′
t], and its consistent estimator

is given by V̂ (γ̂∗) = 1
T

∑T
t=1 ĥtĥ

′
t. When ht is autocorrelated, one can use Newey and West’s (1987)

method to obtain a consistent estimator of V (γ̂∗).

An inspection of Equation (16) in Proposition 1 reveals that there are three sources that con-

tribute to the asymptotic variance of γ̂∗. The first term, γ∗
t −γ∗, measures the asymptotic variance

of γ̂∗ when the true betas are used in the CSR. For example, when Rt is i.i.d., then γ∗
t is also

i.i.d. and we can use the time series variance of γ∗
t to compute the standard error of γ̂∗. This

coincides with the popular Fama and MacBeth (1973) method of computing standard errors for

the risk premia estimates. However, since β̂∗ is used in place of β∗ in the second-pass CSR, there is

an errors-in-variables (EIV) problem. The second term, A∗G∗
tD

−1γ∗
1 , is the EIV adjustment term

that accounts for the estimation error in β̂∗. These two terms together give us the V (γ̂∗) under the

correctly specified model. When the model is misspecified (e 6= 0N ), there is a third term H∗z∗t ut,

which we call the misspecification adjustment term, that contributes to the asymptotic variance

of γ̂∗. This term has been ignored by Jagannathan and Wang (1998) and other researchers when

computing standard errors for γ̂∗.5

5For the estimated GLS and WLS cases, the misspecification adjustment term contains the additional quantities
−(γ∗

t − γ∗)ut and −A∗ΨtΣ
−1
d e, respectively. These additional terms are due to the estimation error in Ŵ . Under

the correctly specified model, it can be readily shown that the use of Ŵ instead of W does not alter the asymptotic
distribution of γ̂∗ (the proof of this result is available upon request), but this is not case when the model is misspecified.
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To gain a better understanding of the relative importance of the misspecification adjustment

term, in the following lemma we derive an explicit expression for V (γ̂∗) under the assumption that

returns and factors are multivariate elliptically distributed.

Lemma 1. Suppose that factors and returns are i.i.d. multivariate elliptically distributed with kur-

tosis parameter κ.6 Let D̃ =

[
0 0′K

0K D−1V11D
−1

]
and � denote the Hadamard product. Define

Υw = [1 + (1 + κ)(γ∗
1
′D−1V11D

−1γ∗
1)]A∗V22A

∗′ + (1 + κ) ×[
0 0′K

0K 2(D−1γ∗
1γ∗

1
′D−1) � V11 � V11 − 4Diag(γ∗

1γ
∗
1
′D−1V11) + γ∗

1γ
∗
1
′

]
, (21)

Υw1 = −(1 + κ)A∗V22We[0, γ∗
1
′D−1V11D

−1]H∗, (22)

where W = V −1
22 for the GLS case and W = Σ−1

d for the WLS case. The asymptotic variance of γ̂∗

is given by

V (γ̂∗) = Υw + Υw1 + Υ′
w1 + Υw2, (23)

where Υw is the asymptotic variance of γ̂∗ when the model is correctly specified, and Υw1+Υ′
w1+Υw2

is the adjustment term due to model misspecification.

(1) For the known weighting matrix W case,

Υw2 = (1 + κ)(e′WV22We)H∗D̃H∗. (24)

(2) For the GLS case, Υw1 vanishes and

Υw2 = (1 + κ)(e′V −1
22 e)(H̃D̃H̃ + H̃), (25)

where H̃ = (X∗′Σ−1X∗)−1.

(3) For the WLS case,

Υw2 = (1 + κ)
[
(e′Σ−1

d V22Σ−1
d e)H∗D̃H∗ + 2A∗ΦA∗′

]
, (26)

where Φ is an (N × N) matrix with its (i, j)-th element equal to ρ2
ijeiej and ρij = Corr[εit, εjt].

6The kurtosis parameter for an elliptical distribution is defined as κ = µ4/(3σ4) − 1, where σ2 and µ4 are the
second and fourth central moments of the elliptical distribution, respectively.
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For the known weighting matrix W and the WLS cases, the misspecification adjustment term

Υw1 + Υ′
w1 + Υw2 is not necessarily positive semidefinite. However, for the GLS case, the misspec-

ification adjustment term Υw2 = (1 + κ)(e′V −1
22 e)(H̃D̃H̃ + H̃) is positive definite. This is because

1 + κ > 0 (see Bentler and Berkane (1986)) and H̃D̃H̃ + H̃ is positive definite. Note that for the

GLS case, the misspecification adjustment term is positively related to the aggregate pricing errors

e′V −1
22 e and the kurtosis parameter κ. In addition, it is worth noting that the misspecification

adjustment term in the GLS case crucially depends on the correlation between factors and returns.

To show this, note that the misspecification adjustment term for V (γ̂∗
1) is

(1 + κ)(e′V −1
22 e)H∗

22D
−1[V11 − V12V

−1
22 V21 + V12V

−1
22 1N (1′NV −1

22 1N )−11′NV −1
22 V21]D−1H∗

22, (27)

where H∗
22 is the lower right K × K submatrix of H∗. Note that the term V11 − V12V

−1
22 V21 is the

variance of the residuals from projecting the factors on the returns. For factors that have very low

correlation with returns (e.g., macroeconomic factors), the impact of this term and hence of the

misspecification adjustment on the asymptotic variance of γ̂∗
1 can be very large.

2. An Empirical Example

We apply our methodology to the same data and asset pricing models considered by Lettau and

Ludvigson (2001).7 In the interest of brevity, we report results for only two beta pricing models: the

Fama-French (1993) three-factor model (FF3) and the scaled CAPM.8 Lettau and Ludvigson (2001)

show that scaling the fundamental factors of a given beta pricing model by the consumption-wealth

ratio (CAY) helps to explain the cross-section of average returns.

The return data consist of the quarterly net returns on the 25 Fama-French size and book-to-

market ranked portfolios from 1963 Q4 to 1998 Q3 (140 quarterly observations). The FF3 implies

a cross-sectional specification of the form

µ2 = γ∗
0 + β∗

vwγ∗
vw + β∗

smbγ
∗
smb + β∗

hmlγ
∗
hml,

where vw is the net return on the value-weighted stock market index (NYSE-AMEX-NASDAQ)

from the Center for Research in Security Prices (CRSP), smb is the return difference between

7We thank Martin Lettau for making his data available to us.
8The full set of estimation results is available upon request.
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portfolios of small and large stocks and hml is the return difference between portfolios of high and

low book-to-market ratios.

The scaled CAPM is obtained by scaling the constant term and the vw factor described above

by a constant and lagged CAY. Scaling factors by instruments is one popular way of allowing factor

risk premia and betas to vary over time. Examples of this type of practice are found in Shanken

(1990), Ferson and Schadt (1996), Cochrane (1996), and Lettau and Ludvigson (2001), among

others.

When various asset pricing models are estimated, we argued in the introduction that it is

not very sensible to compute the standard error of γ̂∗ by assuming that all models are correctly

specified. Therefore, in our empirical example, we mainly examine whether model misspecification

substantially affects the standard error of γ̂∗.

In Table 1, we report γ̂∗ and associated t-ratios of the FF3 and the scaled CAPM under correctly

specified and potentially misspecified models.9 For the t-ratios under the assumption of correctly

specified models, we first report the Fama and MacBeth (1973) ones followed by the Jagannathan

and Wang (1998) ones which account for estimation error in the betas. Last, are the t-ratios

under potentially misspecified models, based on our results in Proposition 1. The various ratios

are identified by subscripts fm, jw, and pm, respectively.10

Table 1 about here

Consistent with our theoretical results, we find that the t-ratios under correctly specified and

potentially misspecified models are similar for traded factors, while they can differ substantially for

non-traded factors such as the scaled market return and the lagged state variable CAY. Consider,

for example, the OLS results for the FF3 model in Panel A. The three t-ratios of γ̂∗
vw, γ̂∗

smb, and

γ̂∗
hml are similar as the factors are all mimicked well by the returns on the test assets. The GLS

and WLS results in Panels B and C deliver a similar message.

However, when we consider the scaled CAPM, the picture changes substantially. For example,

consider the scaled market factor in Panel A. Under the correctly specified model, t-ratiofm is 3.63
9The t-ratios are computed by assuming that the errors have no serial correlation. In a separate set of results

(available upon request), we implement the automatic lag selection procedure without prewhitening of Newey and
West (1994). Overall, accounting for serial correlation in the data has a very minor impact on the results.

10A set of Matlab programs to implement our formulae is available upon request.
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and t-ratiojw is 2.70. But, once we account for potential model misspecification, the t-ratio goes

down to 1.27. Even for the GLS and WLS cases, the standard errors of γ̂vw·cay increase substantially

when we incorporate potential model misspecification.

In summary, we find that for non-traded factors all of the t-ratios under potentially misspecified

models are smaller (in absolute value) than the Fama-MacBeth (1973) and Jagannathan and Wang

(1998) t-ratios. Using our robust standard errors, the estimates of the risk premia on the scaled

factors are never statistically significant at the 5% level.

3. Conclusion

In this paper, we present an asymptotic analysis of the two-pass cross-sectional regression method-

ology that makes uses of simple regression betas instead of multiple regression betas. We contribute

to the existing literature by proposing a simple method for computing standard errors for the esti-

mated zero-beta rate and risk premia that are robust to model misspecification. A nice feature of

our misspecification robust standard errors is that they can be used whether the model is correctly

specified or not. When returns and factors are multivariate elliptically distributed, we are able to

show analytically that with GLS cross-sectional regressions the standard errors under misspecified

models are larger than the standard errors that assume the model is correctly specified. We also

show, in the GLS case, that the misspecification adjustment depends, among other things, on the

correlation between the factor and the test asset returns. This adjustment can be very large when

the underlying factor is poorly mimicked by asset returns. Our empirical example suggests that

ignoring potential model misspecification can lead to the incorrect conclusion that a given risk

factor is priced.
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Appendix

Proof of Proposition 1: In the following, we provide the proof of Proposition 1 for the estimated

GLS and WLS cases as the proof for the known weighting matrix W case is very similar. The proof

relies on the fact that γ̂∗ is a smooth function of µ̂ and V̂ . Therefore, once we have the asymptotic

distribution of µ̂ and V̂ , we can use the delta method to obtain the asymptotic distribution of γ̂∗.

Let

ϕ =

[
µ

vec(V )

]
, ϕ̂ =

[
µ̂

vec(V̂ )

]
. (A1)

We first note that µ̂ and V̂ can be written as the GMM estimator that uses the moment conditions

E[rt(ϕ)] = 0(N+K)(N+K+1), where

rt(ϕ) =

[
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

]
. (A2)

Since this is an exactly identified system of moment conditions, it is straightforward to verify that

under the assumptions that Yt is stationary and ergodic with finite fourth moments, we have11

√
T (ϕ̂− ϕ) A∼ N(0(N+K)(N+K+1), S0), (A3)

where

S0 =
∞∑

j=−∞
E[rt(ϕ)rt+j(ϕ)′]. (A4)

Using the delta method, the asymptotic distribution of γ̂∗ under the misspecified model is given by

√
T (γ̂∗ − γ∗) A∼ N

(
0K+1,

[
∂γ∗

∂ϕ′

]
S0

[
∂γ∗

∂ϕ′

]′)
. (A5)

For both the GLS and the WLS cases, it is straightforward to obtain

∂γ∗

∂µ′
1

= 0(K+1)×K ,
∂γ∗

∂µ′
2

= A∗. (A6)

In order to obtain the derivative of γ∗ = H∗X∗′V −1
22 µ2 with respect to vec(V ) for the GLS case,

we need to first obtain ∂x∗/∂vec(V )′, where x∗ = vec(X∗). We begin by writing write V11 and V21

as

V11 = [IK , 0K×N ]V [IK , 0K×N ]′, V21 = [0N×K , IN ]V [IK, 0K×N ]′ (A7)

11Note that S0 is a singular matrix as V̂ is symmetric, so there are redundant elements in ϕ̂. We could have written
ϕ̂ as [µ̂′, vech(V̂ )′]′, but the results are the same under both specifications.
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to obtain

∂vec(V11)
∂vec(V )′

= [IK , 0K×N ] ⊗ [IK, 0K×N ], (A8)

∂vec(V21)
∂vec(V )′

= [IK , 0K×N ] ⊗ [0N×K, IN ]. (A9)

Let Θ1 be a K2 ×K2 matrix such that vec(D) = Θ1vec(V11),12 we can use the chain rule to derive

the derivative of vec(D−1) with respect to vec(V ) as

∂vec(D−1)
∂vec(V )′

=
∂vec(D−1)
∂vec(D)′

∂vec(D)
∂vec(V11)′

∂vec(V11)
∂vec(V )′

= −(D−1 ⊗ D−1)Θ1 ([IK , 0K×N ] ⊗ [IK , 0K×N ]) . (A10)

Then using the product rule, we obtain

∂vec(β∗)
∂vec(V )′

= (D−1 ⊗ IN)
∂vec(V21)
∂vec(V )′

+ (IK ⊗ V21)
∂vec(D−1)
∂vec(V )′

= [D−1, 0K×N ]⊗ [0N×K, IN ] − (D−1 ⊗ β∗)Θ1 ([IK , 0K×N ]⊗ [IK , 0K×N ]) .(A11)

Finally, using the identity
∂x∗

∂vec(β∗)′
= [0K , IK ]′ ⊗ IN , (A12)

we obtain

∂x∗

∂vec(V )′
=

∂x∗

∂vec(β∗)′
∂vec(β∗)
∂vec(V )′

= [0K, IK ]′[D−1, 0K×N ]⊗ [0N×K, IN ]

−
(
[0K, IK ]′D−1 ⊗ β∗)Θ1 ([IK , 0K×N ] ⊗ [IK, 0K×N ]) . (A13)

With this identity, we now define Km,n as a commutation matrix (see, e.g., Magnus and Neudecker

(1999)) such that Km,nvec(A) = vec(A′) where A is an m×n matrix. Then using the product rule,

we obtain

∂γ∗

∂vec(V )′
= (µ′

2V
−1
22 X∗ ⊗ IK+1)

∂vec(H∗)
∂vec(V )′

+ (µ′
2V

−1
22 ⊗ H∗)

∂vec(X∗′)
∂vec(V )′

+ (µ′
2 ⊗ H∗X∗′)

∂vec(V −1
22 )

∂vec(V )′
.

(A14)

The second term is given by

(µ′
2V

−1
22 ⊗ H∗)

∂vec(X∗′)
∂vec(V )′

12Specifically, Θ1 is a matrix with its (i, i)-th element equals to one, where i = 1, 1+1(K +1), 1+2(K +1), . . . , 1+
(K − 1)(K + 1), and zero elsewhere.
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= (µ′
2V

−1
22 ⊗ H∗)KN,K+1

∂x∗

∂vec(V )′

=
[
H∗[0K , D−1]′, 0(K+1)×N

]
⊗ [0′K , µ′

2V
−1
22 ]

−
(
H∗[0K , D−1]′ ⊗ µ′

2V
−1
22 β∗)Θ1 ([IK , 0K×N ]⊗ [IK , 0K×N ]) . (A15)

The third term is given by

(µ′
2 ⊗ H∗X∗′)

∂vec(V −1
22 )

∂vec(V )′
= −[0′K, µ′

2V
−1
22 ] ⊗ [0(K+1)×K , A∗]. (A16)

For the first term, we use the chain rule to obtain

(µ′
2V

−1
22 X∗ ⊗ IK+1)

∂vec(H∗)
∂vec(V )′

= (µ′
2V

−1
22 X∗ ⊗ IK+1)

∂vec(H∗)
∂vec(H∗−1)′

∂vec(H∗−1)
∂vec(V )′

= −(µ′
2V

−1
22 X∗ ⊗ IK+1)(H∗ ⊗ H∗)

[
(X∗′V −1

22 ⊗ IK+1)
∂vec(X∗′)
∂vec(V )′

+ (IK+1 ⊗ X∗′V −1
22 )

∂vec(X∗)
∂vec(V )′

+ (X∗′ ⊗ X∗′)
∂vec(V −1

22 )
∂vec(V )′

]

= −
(
H∗[0K, IK ]′[D−1, 0K×N ] ⊗ [0′K , γ∗′X∗′V −1

22 ]
)

+
(
H∗[0K , D−1]′ ⊗ γ∗′X∗′V −1

22 β∗)Θ1 ([IK , 0K×N ] ⊗ [IK, 0K×N ])

−
(
γ∗′[0K, IK ]′[D−1, 0K×N ] ⊗ [0(K+1)×K , A∗]

)

+
(
γ∗′[0K, D−1]′ ⊗ A∗β∗)Θ1 ([IK , 0K×N ]⊗ [IK , 0K×N ])

+ [0′K , γ∗′X∗′V −1
22 ]⊗ [0(K+1)×K, A∗]. (A17)

Combining the three terms and using the first order condition β∗′V −1
22 e = 0K , we have

∂γ∗

∂vec(V )′
=

[
H∗[0K , D−1]′, 0(K+1)×N

]
⊗ [0′K , e′V −1

22 ] − [γ∗
1
′D−1, e′V −1

22 ] ⊗ [0(K+1)×K , A∗]

+
(
γ∗

1
′D−1 ⊗ A∗β∗)Θ1 ([IK, 0K×N ] ⊗ [IK , 0K×N ]) . (A18)

Using the above expression of ∂γ∗/∂ϕ′, we can simplify the asymptotic variance of γ̂∗ to

V (γ̂∗) =
∞∑

j=−∞
E[ht(ϕ)h′

t+j(ϕ)], (A19)

where

ht(ϕ) =
∂γ∗

∂ϕ′ rt(ϕ)
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= A∗(Rt − µ2) + vec

(
[0′K , e′V −1

22 ][(Yt − µ)(Yt − µ)′ − V ]

[
[0K, D−1]H∗

0N×(K+1)

])

− vec

(
[0(K+1)×K , A∗][(Yt − µ)(Yt − µ)′ − V ]

[
D−1γ∗

1

V −1
22 e

])

+ (γ∗
1
′D−1 ⊗ A∗β∗)Θ1vec

(
[IK , 0K×N ][(Yt − µ)(Yt − µ)′ − V ]

[
IK

0N×K

])

= A∗(Rt − µ2) + H∗z∗t (Rt − µ2)′V −1
22 e − A∗(Rt − µ2)(ft − µ1)′D−1γ∗

1

− A∗(Rt − µ2)(Rt − µ2)′V −1
22 e + A∗β∗γ∗

1 + A∗β∗DtD
−1γ∗

1 − A∗β∗γ∗
1

= A∗(Rt − µ2) − A∗ [(Rt − µ2)(ft − µ1)′ − β∗Dt

]
D−1γ∗

1 + H∗z∗t ut − A∗(Rt − µ2)ut

= (γ∗
t − γ∗) + A∗G∗

tD
−1γ∗

1 + H∗z∗t ut − (γ∗
t − γ∗)ut. (A20)

We now turn to the WLS case where W = Σ−1
d and γ∗ = H∗X∗′Σ−1

d µ2. Using the product rule,

we obtain

∂γ∗

∂vec(V )′
= (µ′

2Σ
−1
d X∗ ⊗ IK+1)

∂vec(H∗)
∂vec(V )′

+ (µ′
2Σ

−1
d ⊗ H∗)

∂vec(X∗′)
∂vec(V )′

+ (µ′
2 ⊗ H∗X∗′)

∂vec(Σ−1
d )

∂vec(V )′
.

(A21)

The second term is given by

(µ′
2Σ

−1
d ⊗ H∗)

∂vec(X∗′)
∂vec(V )′

= (µ′
2Σ

−1
d ⊗ H∗)KN,K+1

∂x∗

∂vec(V )′

=
[
H∗[0K, D−1]′, 0(K+1)×N

]
⊗ [0′K , µ′

2Σ
−1
d ]

−
(
H∗[0K , D−1]′ ⊗ µ′

2Σ
−1
d β∗)Θ1 ([IK , 0K×N ]⊗ [IK , 0K×N ]) . (A22)

Let Θ be an N2 × N2 matrix such that vec(Σd) = Θvec(Σ). It follows that

∂vec(Σ−1
d )

∂vec(V )′
=

∂vec(Σ−1
d )

∂vec(Σd)′
∂vec(Σd)
∂vec(Σ)′

∂vec(Σ)
∂vec(V )′

= −(Σ−1
d ⊗ Σ−1

d )Θ([−β, IN ]⊗ [−β, IN ]) (A23)

and the third term is given by

(µ′
2 ⊗ H∗X∗′)

∂vec(Σ−1
d )

∂vec(V )′
= −(µ′

2Σ
−1
d ⊗ A∗)Θ ([−β, IN ] ⊗ [−β, IN ]) . (A24)

For the first term, we use the chain rule to obtain

(µ′
2Σ

−1
d X∗ ⊗ IK+1)

∂vec(H∗)
∂vec(V )′
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= (µ′
2Σ

−1
d X∗ ⊗ IK+1)

∂vec(H∗)
∂vec(H∗−1)′

∂vec(H∗−1)
∂vec(V )′

= −(µ′
2Σ

−1
d X∗ ⊗ IK+1)(H∗ ⊗ H∗)

[
(X∗′Σ−1

d ⊗ IK+1)
∂vec(X∗′)
∂vec(V )′

+ (IK+1 ⊗ X∗′Σ−1
d )

∂vec(X∗)
∂vec(V )′

+ (X∗′ ⊗ X∗′)
∂vec(Σ−1

d )
∂vec(V )′

]

= −
(
H∗[0K , IK ]′[D−1, 0K×N ]⊗ [0′K, γ∗′X∗′Σ−1

d ]
)

+
(
H∗[0K , D−1]′ ⊗ γ∗′X∗′Σ−1

d β∗)Θ1 ([IK , 0K×N ] ⊗ [IK, 0K×N ])

−
(
γ∗′[0K , IK ]′[D−1, 0K×N ] ⊗ [0(K+1)×K, A∗]

)

+
(
γ∗′[0K , D−1]′ ⊗ A∗β∗)Θ1 ([IK , 0K×N ] ⊗ [IK, 0K×N ])

+ (γ∗′X∗′Σ−1
d ⊗ A∗)Θ ([−β, IN ] ⊗ [−β, IN ]) . (A25)

Combining the three terms and using the first order condition β∗′Σ−1
d e = 0K , we have

∂γ∗

∂vec(V )′
=

[
H∗[0K , D−1]′, 0(K+1)×N

]
⊗ [0′K , e′Σ−1

d ]− [γ∗
1
′D−1, 0′N ] ⊗ [0(K+1)×K , A∗]

+
(
γ∗

1
′D−1 ⊗ A∗β∗)Θ1 ([IK, 0K×N ] ⊗ [IK , 0K×N ])

− (e′Σ−1
d ⊗ A∗)Θ ([−β, IN ] ⊗ [−β, IN ]) . (A26)

Using the above expression of ∂γ∗/∂ϕ′, we can simplify the asymptotic variance of γ̂∗ to

V (γ̂∗) =
∞∑

j=−∞
E[ht(ϕ)h′

t+j(ϕ)], (A27)

where

ht(ϕ) =
∂γ∗

∂ϕ′ rt(ϕ)

= A∗(Rt − µ2) + vec

(
[0′K, e′Σ−1

d ][(Yt − µ)(Yt − µ)′ − V ]

[
[0K , D−1]H∗

0N×(K+1)

])

− vec

(
[0(K+1)×K , A∗][(Yt − µ)(Yt − µ)′ − V ]

[
D−1γ∗

1

0N

])

+ (γ∗
1
′D−1 ⊗ A∗β∗)Θ1vec

(
[IK, 0K×N ][(Yt − µ)(Yt − µ)′ − V ]

[
IK

0N×K

])

− (e′Σ−1
d ⊗ A∗)Θvec

(
[−β, IN ][(Yt − µ)(Yt − µ)′ − V ]

[
−β′

IN

])

= A∗(Rt − µ2) + H∗z∗t (Rt − µ2)′V −1
22 e − A∗(Rt − µ2)(ft − µ1)′D−1γ∗

1 + A∗β∗γ∗
1
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+ A∗β∗DtD
−1γ∗

1 − A∗β∗γ∗
1 − A∗ΨtΣ−1

d e

= A∗(Rt − µ2)− A∗ [(Rt − µ2)(ft − µ1)′ − β∗Dt

]
D−1γ∗

1 + H∗z∗t ut − A∗ΨtΣ−1
d e

= (γ∗
t − γ∗) + A∗G∗

tD
−1γ∗

1 + H∗z∗t ut − A∗ΨtΣ−1
d e. (A28)

Note that when the model is correctly specified, we have e = 0N , so ut = 0 and the ht(ϕ) for

both the GLS and the WLS cases can be simplified to

ht(ϕ) = (γ∗
t − γ∗) + A∗G∗

t D
−1γ∗

1 . (A29)

This completes the proof.

Proof of Lemma 1: In our proof, we rely on the mixed moments of multivariate elliptical distribu-

tions. Lemma 2 of Maruyama and Seo (2003) shows that if (Xi, Xj , Xk, Xl) are jointly multivariate

elliptically distributed and with mean zero, we have

E[XiXjXk] = 0, (A30)

E[XiXjXkXl] = (1 + κ)(σijσkl + σikσjl + σilσjk), (A31)

where σij = Cov[Xi, Xj].

Starting from the known weighting matrix case, the asymptotic variance of γ̂∗ is given by

V (γ̂∗) = E[hth
′
t], (A32)

where

ht = h1t + h2t + h3t, (A33)

with

h1t = A∗(Rt − µ2), h2t = A∗[β∗Dt − (Rt − µ2)(ft − µ1)′]D−1γ∗
1 , h3t = H∗z∗t ut. (A34)

It is straightforward to show that the means of h1t to h3t are all equal to zero and

E[h1th
′
1t] = A∗V22A

∗′. (A35)

In addition, h1t is uncorrelated with h2t and h3t. For h2t, we first write

Rt − µ2 = β(ft − µ1) + εt = β∗DV −1
11 (ft − µ1) + εt. (A36)
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Using the fact that A∗β∗ = [0K, IK ]′, we can write

h2t =

[
0

qt

]
− A∗εt(ft − µ1)′D−1γ∗

1 , (A37)

where

qt = [Dt − DV −1
11 (ft − µ1)(ft − µ1)′]D−1γ∗

1. (A38)

Then using the fact that εt and ft are uncorrelated, we have

E[h2th
′
2t] =

[
0 0′K

0K E[qtq
′
t]

]
+ (1 + κ)(γ∗

1
′D−1V11D

−1γ∗
1)A∗(V22 − V21V

−1
11 V12)A∗′. (A39)

Let a be a K-vector. It is easy to show that

E[Dtaa′Dt] = (1 + κ)[Daa′D + 2aa′ � V11 � V11], (A40)

E[Dtaa′(ft − µ1)(ft − µ1)′V −1
11 D] = (1 + κ)[Daa′D + 2Diag(aa′V11)D]. (A41)

It follows that by choosing a = D−1γ∗
1, we have

E[qtq
′
t] = (1 + κ)[2(D−1γ∗

1γ∗
1
′D−1) � V11 � V11 + γ∗

1γ∗
1
′]

+ (1 + κ)[(γ∗
1
′D−1V11D

−1γ∗
1)DV −1

11 D + 2γ∗
1γ

∗
1
′]

− (1 + κ)[4Diag(D−1γ∗
1γ∗

1
′D−1V11)D + 2γ∗

1γ
∗
1
′]

= (1 + κ)[2(D−1γ∗
1γ∗

1
′D−1) � V11 � V11 + (γ∗

1
′D−1V11D

−1γ∗
1)DV −1

11 D

− 4Diag(γ∗
1γ∗

1
′D−1V11) + γ∗

1γ∗
1
′]. (A42)

The last identity follows because Diag(D−1A)D = Diag(A).

As a result, we have

E[h2th
′
2t] = (1 + κ)(γ∗

1
′D−1V11D

−1γ∗
1)A∗V22A

∗′ + (1 + κ) ×[
0 0′K

0K 2(D−1γ∗
1γ∗

1
′D−1) � V11 � V11 − 4Diag(γ∗

1γ
∗
1
′D−1V11) + γ∗

1γ
∗
1
′

]
.(A43)

For h3t, it is easy to obtain

E[h3th
′
3t] = H∗

[
0 0′K

0K (1 + κ)(e′WV22We)D−1V11D
−1

]
H∗. (A44)

Finally, using the fact that ut is uncorrelated with ft, the cross-moment between h2t and h3t is

given by

E[h2th
′
3t] = −(1 + κ)A∗V22We[0, γ∗

1
′D−1V11D

−1]H∗. (A45)
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Collecting terms, we obtain

Υw = E[h1th
′
1t] + E[h2th

′
2t]

= [1 + (1 + κ)(γ∗
1
′D−1V11D

−1γ∗
1)]A∗V22A

∗′ + (1 + κ) ×[
0 0′K

0K 2(D−1γ∗
1γ∗

1
′D−1) � V11 � V11 − 4Diag(γ∗

1γ∗
1
′D−1V11) + γ∗

1γ∗
1
′

]
, (A46)

Υw1 = E[h2th
′
3t] = −(1 + κ)A∗V22We[0, γ∗

1
′D−1V11D

−1]H∗, (A47)

Υw2 = E[h3th
′
3t] = (1 + κ)(e′WV22We)H∗D̃H∗. (A48)

Turning to the GLS case, we have

ht = h1t + h2t + h3t + h4t, (A49)

with

h1t = A∗(Rt − µ2), h2t = A∗[β∗Dt − (Rt − µ2)(ft − µ1)′]D−1γ∗
1 , (A50)

h3t = H∗z∗t ut, h4t = −(γ∗
t − γ∗)ut. (A51)

Note that h1t to h3t are the same as those in the known weighting matrix case after setting W =

V −1
22 . It follows that the Υw and Υw1 expressions are the same as the ones in the known weighting

matrix case. For the GLS case, it is also obvious that Υw1 is a zero matrix because A∗V22V
−1
22 e =

A∗e = 0K+1.

It is easy to see that h1t is uncorrelated with h4t. We now show that h2t is also uncorrelated

with h4t. Let a be a K-vector and b be an N -vector. Under the multivariate elliptical distribution

assumption, it can be shown that

E[Dtab′(Rt − µ2)(Rt − µ2)′] = (1 + κ)[Dab′V22 + 2Diag(V12ba
′)V12]. (A52)

Using (A52) with a = D−1γ∗
1 and b = V −1

22 e and the fact that A∗e = 0K+1 and β∗′V −1
22 e = 0K ,

after some algebra we obtain

E[h2th
′
4t] = 0(K+1)×(K+1). (A53)

It is straightforward to show that

E[h3th
′
3t] = (1 + κ)(e′V −1

22 e)H∗D̃H∗, (A54)

E[h3th
′
4t] = −(1 + κ)(e′V −1

22 e)H∗

[
0 0′K

0K IK

]
, (A55)

E[h4th
′
4t] = (1 + κ)(e′V −1

22 e)H∗. (A56)
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Collecting terms and using the identity

H∗ = H̃ +

[
0 0′K

0K DV −1
11 D

]
, (A57)

we obtain

Υw2 = E[h3th
′
3t] + E[h3th

′
4t] + E[h4th

′
3t] + E[h4th

′
4t] = (1 + κ)(e′V −1

22 e)(H̃D̃H̃ + H̃). (A58)

Finally, for the WLS case, we have

ht = h1t + h2t + h3t + h4t, (A59)

with

h1t = A∗(Rt − µ2), h2t = A∗[β∗Dt − (Rt − µ2)(ft − µ1)′]D−1γ∗
1 , (A60)

h3t = H∗z∗t ut, h4t = −A∗ΨtΣ−1
d e. (A61)

Note that h1t to h3t are the same as those in the known weighting matrix case after setting W = Σ−1
d .

It follows that the Υw and Υw1 expressions are the same as the ones in the known weighting matrix

case.

It is easy to verify that h4t is uncorrelated with h1t to h3t. In addition, it can be shown that

E[ΨtΣ−1
d ee′Σ−1

d Ψt] = (1 + κ)(2Φ + ee′). (A62)

Using this identity and the fact that A∗e = 0K+1, we obtain

E[h4th
′
4t] = 2(1 + κ)A∗ΦA∗′ (A63)

and

Υw2 = E[h3th
′
3t] + E[h4th

′
4t] = (1 + κ)

[
(e′Σ−1

d V22Σ−1
d e)H∗D̃H∗ + 2A∗ΦA∗′

]
. (A64)

When the model is correctly specified, e = 0N and as a result both Υw1 and Υw2 vanish and we

have V (γ̂∗) = Υw . This completes the proof.
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Table 1
Estimates and t-ratios of Zero-Beta Rate and Risk Premia under Correctly Spec-
ified and Misspecified Models

Panel A: OLS

FF3 Scaled CAPM

γ̂∗
0 γ̂∗

vw γ̂∗
smb γ̂∗

hml γ̂∗
0 γ̂∗

cay γ̂∗
vw γ̂∗

vw·cay

Estimate 1.87 2.92 −0.24 2.19 3.68 −0.33 0.85 0.12
t-ratiofm 1.31 1.19 −0.25 3.22 3.89 −1.22 0.61 3.63
t-ratiojw 1.16 1.09 −0.23 2.97 2.69 −0.64 0.36 2.70
t-ratiopm 0.95 0.89 −0.20 2.50 2.38 −0.19 0.18 1.27

Panel B: GLS

FF3 Scaled CAPM

γ̂∗
0 γ̂∗

vw γ̂∗
smb γ̂∗

hml γ̂∗
0 γ̂∗

cay γ̂∗
vw γ̂∗

vw·cay

Estimate 3.98 −0.52 0.93 1.31 4.01 0.24 −1.25 0.01
t-ratiofm 4.18 −0.30 1.24 2.25 5.85 1.12 −1.22 0.69
t-ratiojw 4.07 −0.29 1.17 2.33 5.03 1.08 −1.11 0.68
t-ratiopm 2.64 −0.20 0.95 1.87 4.04 0.65 −0.93 0.48

Panel C: WLS

FF3 Scaled CAPM

γ̂∗
0 γ̂∗

vw γ̂∗
smb γ̂∗

hml γ̂∗
0 γ̂∗

cay γ̂∗
vw γ̂∗

vw·cay

Estimate 2.53 1.85 0.15 1.93 2.82 −0.08 0.91 0.12
t-ratiofm 1.79 0.77 0.16 2.87 3.09 −0.31 0.70 3.91
t-ratiojw 1.66 0.73 0.15 2.78 1.94 −0.15 0.39 2.75
t-ratiopm 1.29 0.57 0.13 2.22 1.82 −0.07 0.24 1.62

The table presents the estimation results of the FF3 and scaled CAPM, where the scaling variables are a
constant term and the lagged consumption-wealth ratio (CAY) of Lettau and Ludvigson (2001). The models
are estimated using quarterly returns on the 25 Fama-French size and book-to-market ranked portfolios.
The data are from 1963 Q4 to 1998 Q3 (140 observations). We report parameter estimates γ̂∗ (multiplied by
100), the Fama and MacBeth (1973) t-ratios under correctly specified models (t-ratiofm), the Jagannathan
and Wang (1998) t-ratios under correctly specified models (t-ratiojw) that account for the errors-in-variables
problem, and our model misspecification robust t-ratios (t-ratiopm).
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